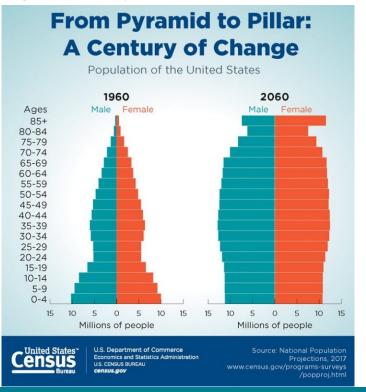
Administrative Supplement Research Project

Focus on Mexican Americans: Mitochondrial Underpinnings of Sex- and Ethnicity-based risk for Alzheimer's disease

THE UNIVERSITY of NORTH TEXAS
HEALTH SCIENCE CENTER at FORT WORTH

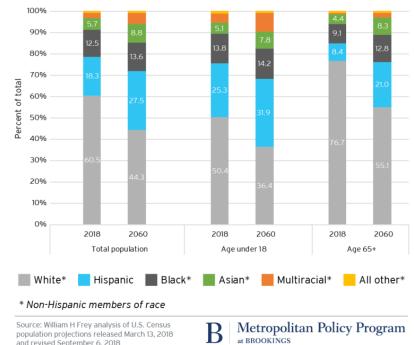
Nicole Phillips, Ph.D., M.S.
Assistant Professor


Microbiology, Immunology & Genetics

The US population is changing

Age shift...

- Living longer
- Large, Baby Boomer generation is now aged 55-73 years



Race/ethnicity shift...

- Diversification
- Fast-growing Mexican American population

U.S. race-ethnic profiles, 2018 and 2060

and revised September 6, 2018

Mexican American-AD Health Disparities

J Alzheimers Dis. 2013 January 1; 33(2): 373–379. doi:10.3233/JAD-2012-121420.

Characterization of Mexican Americans with Mild Cognitive Impairment and Alzheimer's Disease

Sid E. O'Bryant^{1,2}, Leigh Johnson^{1,2}, Valerie Balldin³, Melissa Edwards^{1,4}, Robert Barber^{2,5}, Benjamin Williams⁶, Michael Devous⁷, Blair Cushings¹, Janice Knebl¹, and James Hall^{2,8}

	Mexican A	merican		Non-Hispanic White				
	AD (n=35)	MCI (n=67)	NC (n=337)	AD (n=160)	MCI (n=97)	NC (n= 376)		
Age (years)	73.6 (9.1)	61.9 (12.3)	58.7 (9.9)	79.4 (7.0)	74.4 (10.6)	65.6 (11.5)		
Education (years)	ducation (years) 5.9 (4.5) 6.6 (4.2)		8.1 (4.2)	13.2 (3.2)	12.4 (2.5)	14.3 (2.8)		
Gender (%male)	45%	38%	29%	39%	33%	32%		
MMSE I	18.5 (5.0)	24.7 (3.6)	27.5 (2.8)	21.6 (4.6)	26.1 (2.7)	29.0 (1.3)		
CDR SB	R SB 5.5 (3.6) 0.8 (1.0)	0.8 (1.0)	0.1 (0.4)	5.4 (3.3)	1.2 (1.1)	0.1 (0.4)		
GDS	9.8 (5.5)	9.3 (1.5)	6.1 (5.6)	5.9 (4.4)	5.6 (0.7)	4.4 (4.7)		
Depressed (%yes)	46%	44%	21%	18%	29%	10%		
ApοEε4 positive	38%	26%	19%	60%	37%	23%		
Diabetes	46%	51%	35%	14%	29%	16%		
Obese	27%	45%	47%	13%	16%	25%		

Earlier onset of cognitive impairment/AD

Diagnosis later and

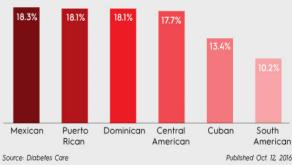
at more advanced

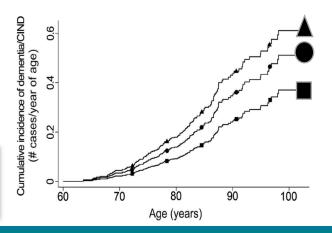
stage of disease

progression

Mexican
Americans
and AD Health
Disparities

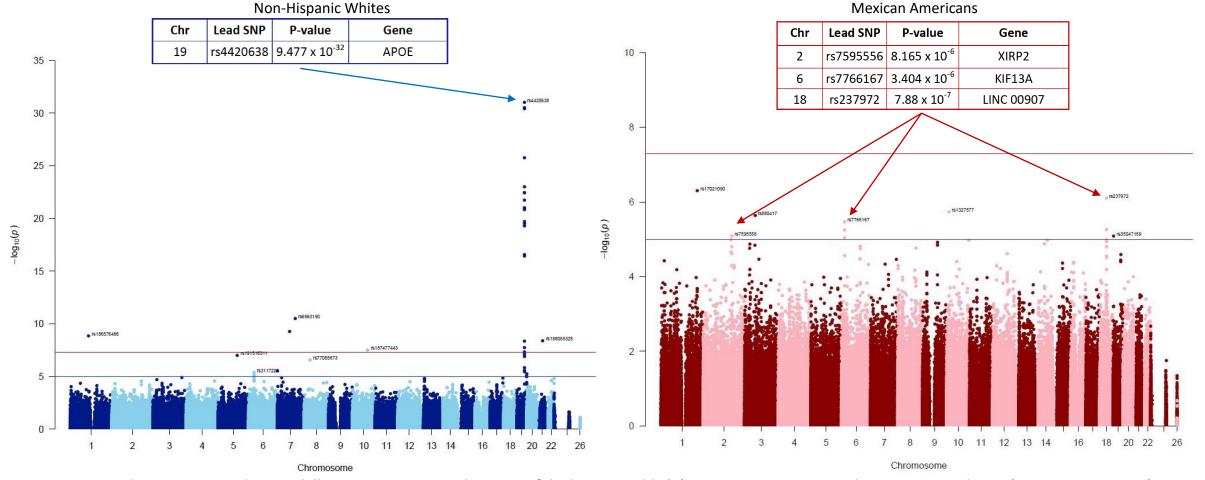
higher incidence rate of AD-related comorbidities


Hispanics have


Women in general have <u>higher risk</u> for AD and MA women bear the care-giving burden

<u>Figure</u> 1. Cumulative incidence of dementia (CIND) by diabetes status. Squares, no diabetes; circles, diabetes untreated; triangles, diabetes treated. From Mayeda et al., 2013.

2x the prevalence rate compared to non-Hispanic whites

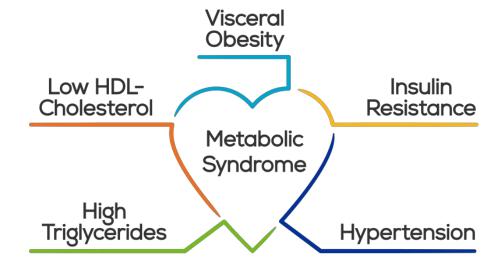


Biology of MA-AD Health Disparity

• Unique genetic risk factors for dementia...

Colmenarez, M., Barber, R., Phillips, N. R. Genomic Architecture of the latent variable 'D' in Mexican Americans and Non-Hispanic Whites; (2020, In preparation).

Biology of MA-AD Health Disparity



Unique blood-based AD signature...

J Alzheimers Dis. 2013 January 1; 34(4): 841–849. doi:10.3233/JAD-122074.

Biomarkers of Alzheimer's Disease Among Mexican Americans

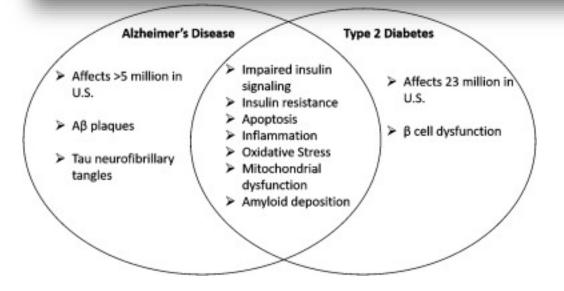
Sid E. O'Bryant^{a,b}, Guanghua Xiao^c, Melissa Edwards^{a,d}, Michael Devous^e, Veer Bala Gupta^{f,g}, Ralph Martins^{f,g}, Fan Zhang^h, Robert Barber^{b,i}, and for the Texas Alzheimer's Research and Care Consortium (TARCC)*

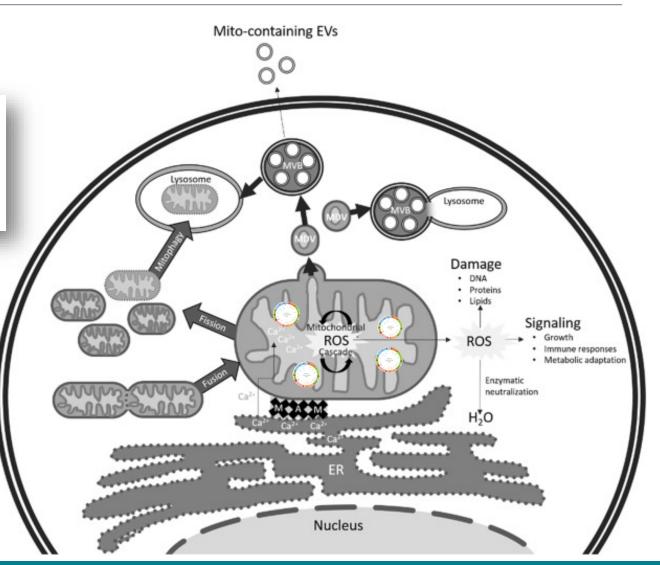
Top 30 markers associated with AD among Mexican Americans as compared to non-Hispanic whites

Top 30 biomarkers of AD among Mexican Americans		Fold Change of Mexican American biomarkers	Top 30 biomarkers previously identified among non- Hispanic whites ²²	Fold Change among non- Hispanic whites
1.	Fatty Acid Binding Protein	1.70	Thrombopoietin	2.18
2.	CD40 [*]	1.29	MIP1α	0.70
3.	Glucagon like peptide 1	1.21	Eotaxin 3	1.26
4.	IgM	0.67	TNFα	0.74
5.	Beta 2 Microglobulin **	1.34	Creatine kinase	0.80
6.	IGF BP2 [*]	1.61	Tenascin C	1.60
7.	IL8	1.09	FAS	1.03
8.	Peptide YY	1.69	Fibrinogen	0.87
9.	Macrophage-derived chemokine	1.09	IL 10	0.76
10.	MIP1α ✓*	1.31	IL 7	1.02
11.	Pancreatic polypeptide ✓*	1.50	Cancer antigen 19 9	1.09
12.	TNF RII [*]	1.30	Prostatic acid phosphatase	0.78
13.	IL18 ✓	0 98	Apolipoprotein CIII	1.12
14.	Myoglobin	1.34	Fas ligand	0.85
15.	CRP CRP	0.75	CRP	0.86
16.	αl-antitrypsin [*]	1.16	Pancreatic polypeptide	1.33
17.	Super oxide dismutase*	1.24	TIMP 1	0.99
18.	Migration inhibitory factor	1.50	Angiopoietin 2	0.95
19.	Thyroxine binding globulin	0.95	Stem cell factor	0.74
20.	EGF	1.06	IL 5	0.92
21.	VCAM1 ✓	1.17	Lipoprotein a	1.07
22.	Carcinoembryonic antigen*	1.34	α2-macroglobulin	2.45
23.	Glutathione S transferase	0.69	ACE CD143	1.01
24.	Prostatic acid phosphatase ✓	1.04	MCP 1	0.85
25.	Tenascin C✓	1.23	Ferritin	0.97

Biology of MA-AD Health Disparity

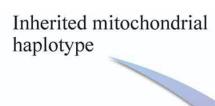
• A role for mitochondrial function...


Review


Etiology of type 2 diabetes and Alzheimer's disease: Exploring the mitochondria

Talisa K. Silzer^a, Nicole R. Phillips^{a,b,*}

a Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX, USA


b Center for Alzheimer's and Neurodegenerative Disease Research (CANDR), University of North Texas Health Science Center, Fort Worth, TX, USA

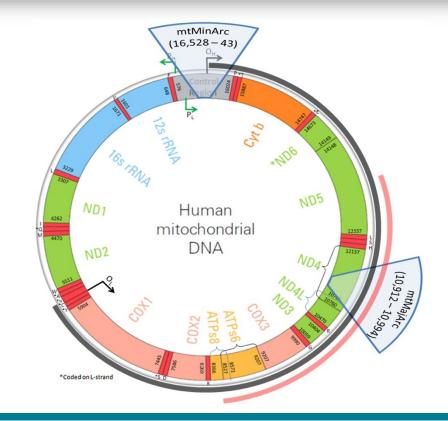
Mitochondrial DNA

Mutations accumulated during aging

Deficient mitochondrial function

- Reduced ATP production
- Increased free radical production
- Disrupted calcium homeostasis
- Increased ER stress, MAM dysfunction
- Disrupted mitochondrial dynamics
- Aβ production and plaque deposition
- Tau phosphorylation and tangle formation

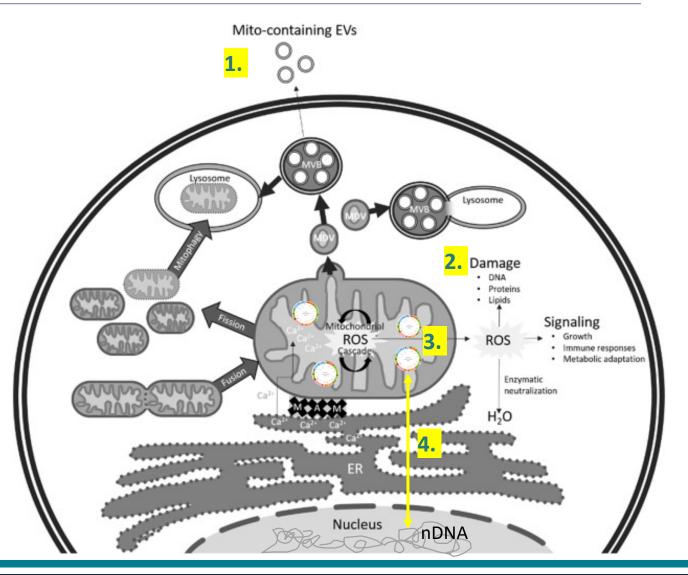
Further damage of mitochondrial DNA, proteins, and lipids


Opening of mitochondrial permeability transition pore

Apoptosis and neurodegeneration

Late onset Alzheimer's Disease

Triad of Risk for Late Onset Alzheimer's: Mitochondrial Haplotype, APOE Genotype and Chromosomal Sex


Yiwei Wang¹ and Roberta D. Brinton^{2*}

Key Mitochondrial DNA Phenotypes

- 1. CFmtDNA- amount of mtDNA in the cell-free space of peripheral blood (i.e., plasma or serum)
- 2. MLmtDNA- degree of mtDNA damage or mutational load
- 3. CNmtDNA- mtDNA copy number
- 4. MitoType and MNC- mitonuclear compatibility

Our Overarching Hypothesis

We hypothesize that blood-based indices of mitochondrial function will reveal sex-and ethnicity-specific mitochondrial dysfunction which is positively associated with T2D and cognitive impairment (AD or MCI) using samples collected as part of the Texas Alzheimer's Research and Care

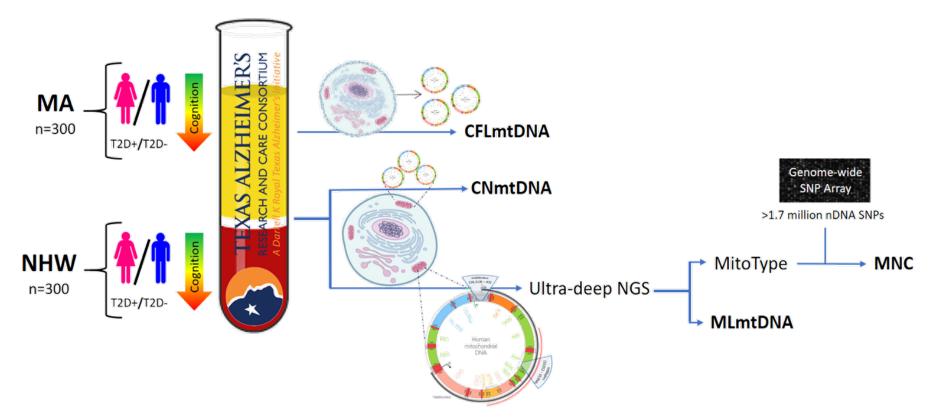
Consortium.

TARCC Participants

- State-wide research collaboration between the Top 9 biomedical research institutions in Texas, focused on improving diagnosis, prevention, and treatment of AD patients
- Research strategy includes longitudinally-collected biological samples;
 ~3000 NHW and MA patients

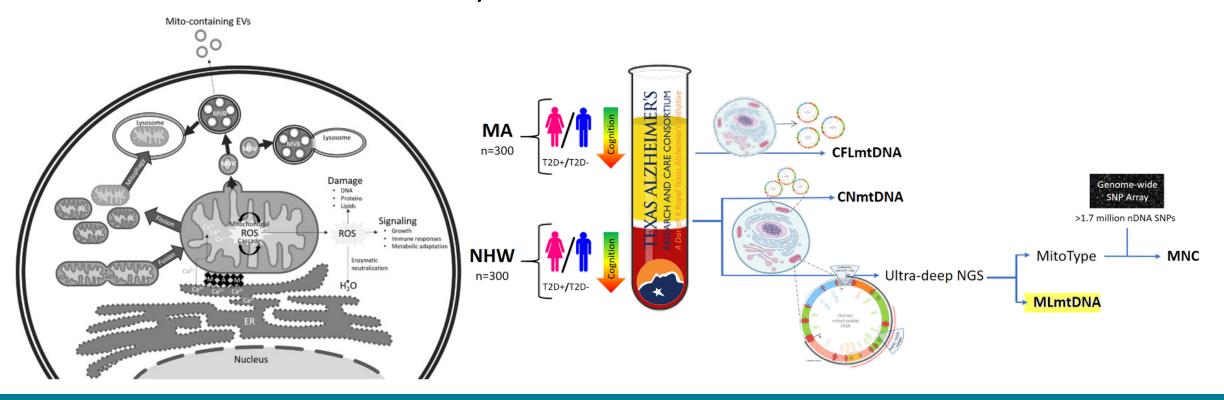
Table 1. TARCC Enrollment Demographic Summary (updated 2016). Accessed 2/01/2019 at www.txalzresearch.org/.

Total Enrollment Count											
	Τ	Women		Π̈́	otal Elifoli	Men		Г		All	
Diagnosis	Hispanic	non-Hispanic	Total	П	Hispanic	non-Hispanic	Total	Г	Hispanic	non-Hispanic	Total
AD	112	603	715	П	62	497	559		174	1100	1274
MCI	214	205	419	П	114	190	304		328	395	723
NC	528	457	985	П	198	259	457		726	716	1442
All	854	1265	2119	П	374	946	1320		1228	2211	3439
				П							
				To	tal Enrollm	nent Percent					
		Women				Men				All	
Diagnosis	Hispanic	non-Hispanic	Total	П	Hispanic	non-Hispanic	Total		Hispanic	non-Hispanic	Total
AD	16%	84%	56%	П	11%	89%	44%		14%	86%	100%
MCI	51%	49%	58%	Π	38%	63%	42%		45%	55%	100%
NC	54%	46%	68%		43%	57%	32%		50%	50%	100%
All	40%	60%	62%		28%	72%	38%		36%	64%	100%

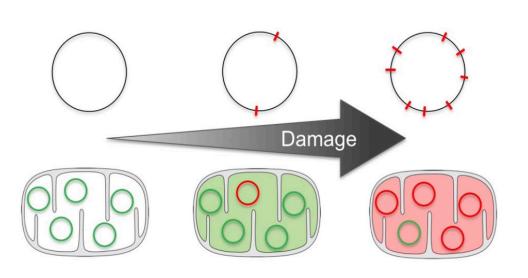


Overview of Approach

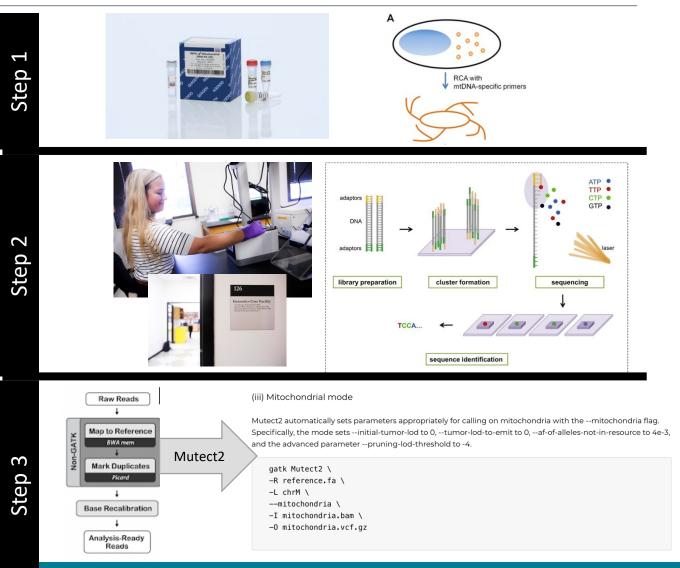
Specific Aim 1 Research Q: What are the primary markers of mitochondrial function that indicate cognitive impairment and/or comorbidity in Mexican Americans?


Specific Aim 2 Research Q: Can markers of mitochondrial function combined with genetic risk predict cognitive impairment and/or comorbidity in Mexican American women?

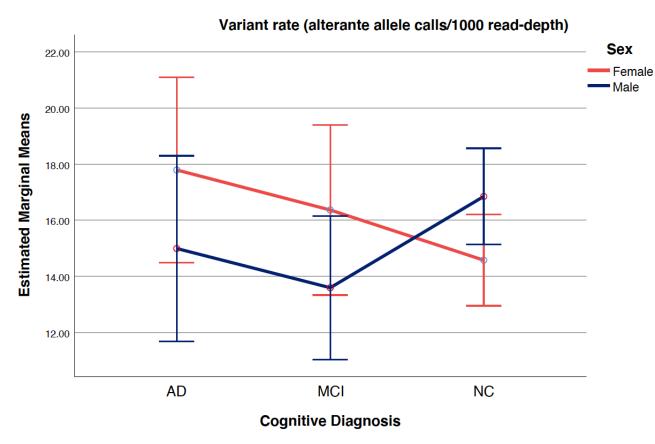
Specific Aim 1



What are the primary markers of mitochondrial function that indicate cognitive impairment and/or comorbidity in Mexican Americans?



Background- MtDNA Mutational Load

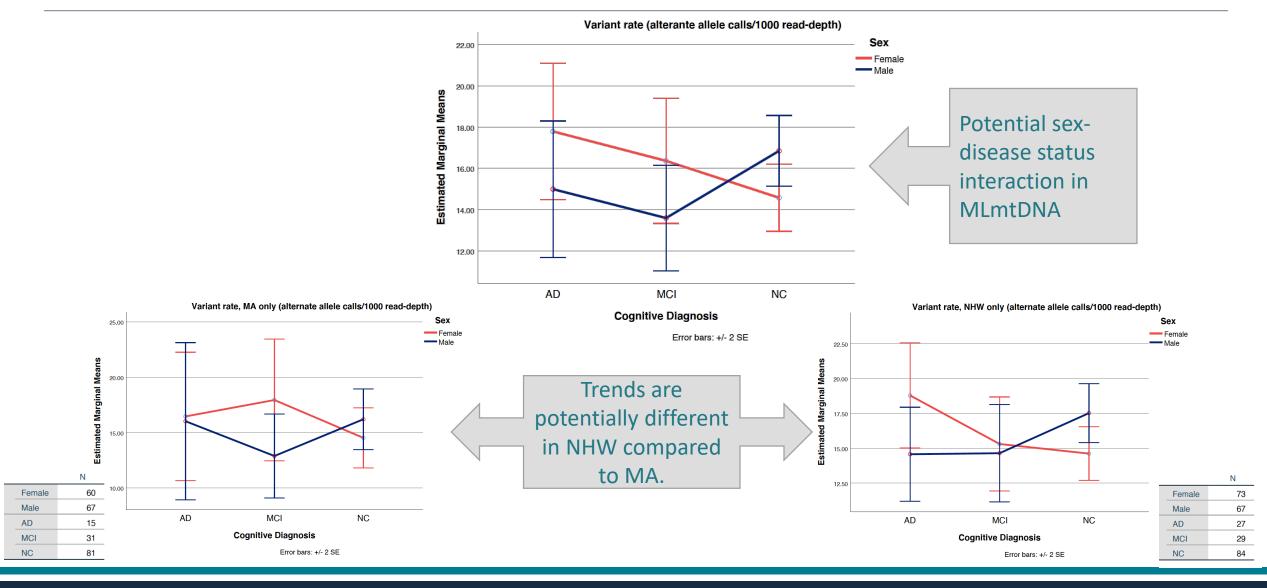


http://www.mrc-mbu.cam.ac.uk/

MtDNA Mutational Load

Error bars: +/- 2 SE

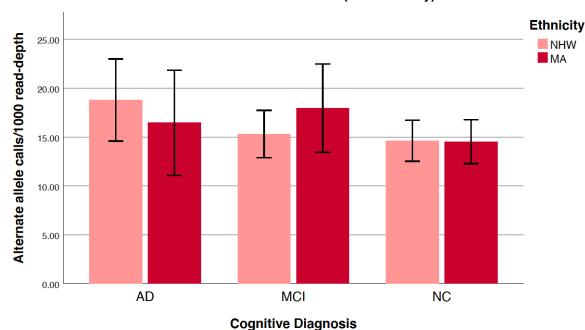
Potential sex-disease status interaction in MLmtDNA


Dependent Variable: Per1000depth_variants

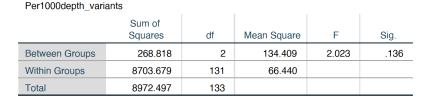
	• –				
Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	476.864 ^a	5	95.373	1.658	.145
Intercept	47122.357	1	47122.357	819.433	.000
Sex	57.940	1	57.940	1.008	.316
vlookup_Diagnosis_Cog	49.998	2	24.999	.435	.648
Sex * vlookup_Diagnosis_Cog	398.474	2	199.237	3.465	.033
Error	15009.073	261	57.506		
Total	80146.291	267			
Corrected Total	15485.937	266			

a. R Squared = .031 (Adjusted R Squared = .012)

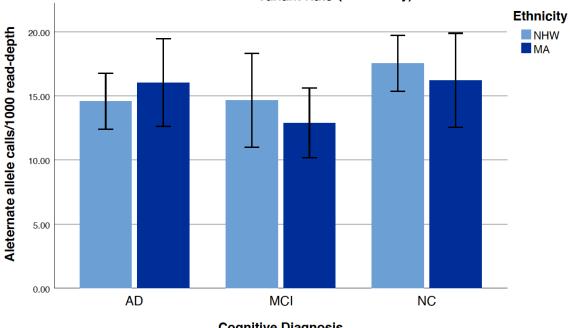
MtDNA Mutational Load


Mutational Load- by sex and ethnicity

ANOVA


Per1000depth_variants									
	Sum of Squares	df	Mean Square	F	Sig.				
Between Groups	202.556	2	101.278	2.088	.128				
Within Groups	6305.394	130	48.503						
Total	6507 950	132							

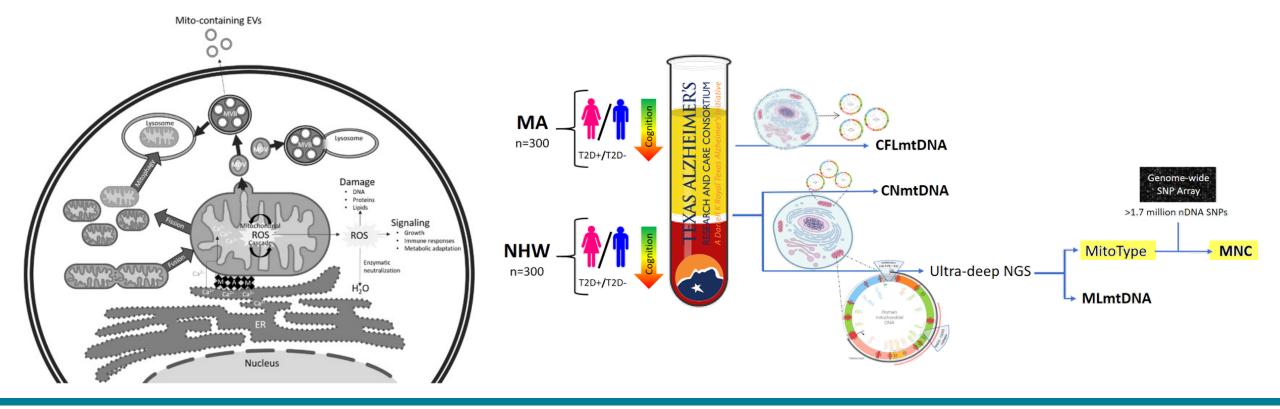
Variant Rate (Females only)



Error Bars: 95% CI

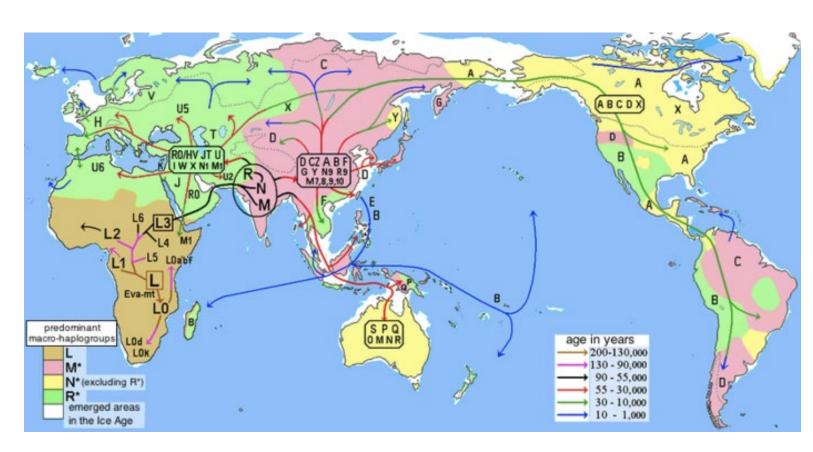
ANOVA

Variant Rate (Males only)

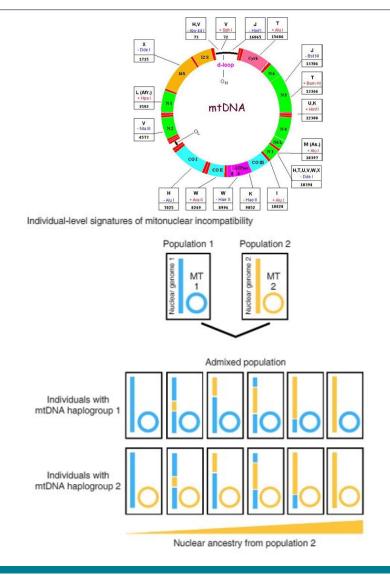

Cognitive Diagnosis

Error Bars: 95% CI

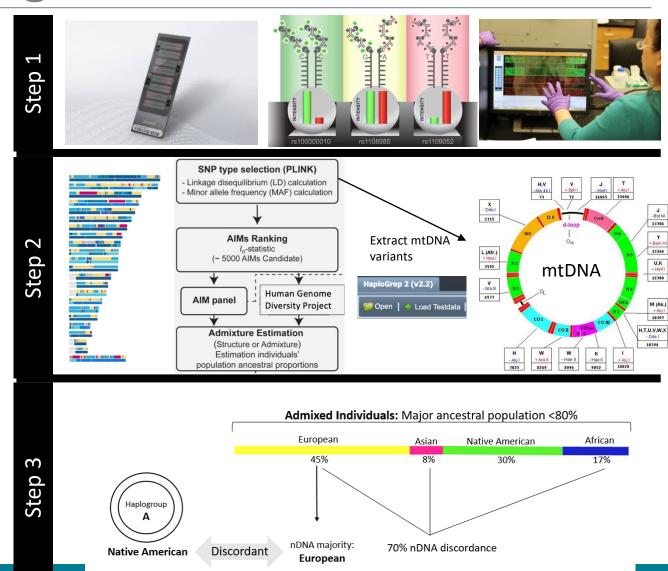
Specific Aim 2



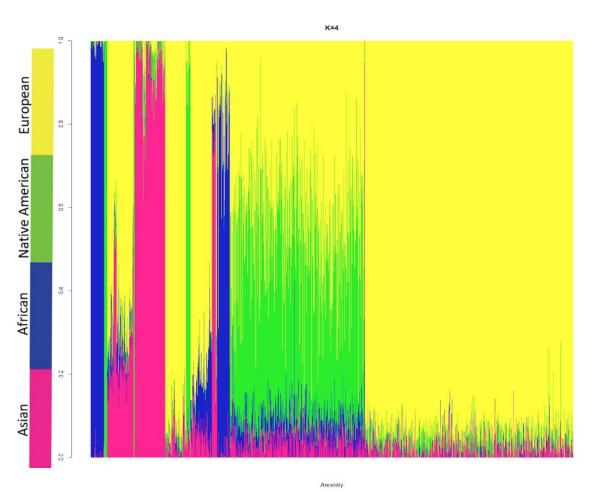
Can markers of mitochondrial function combined with genetic risk predict cognitive impairment and/or comorbidity in Mexican American women?

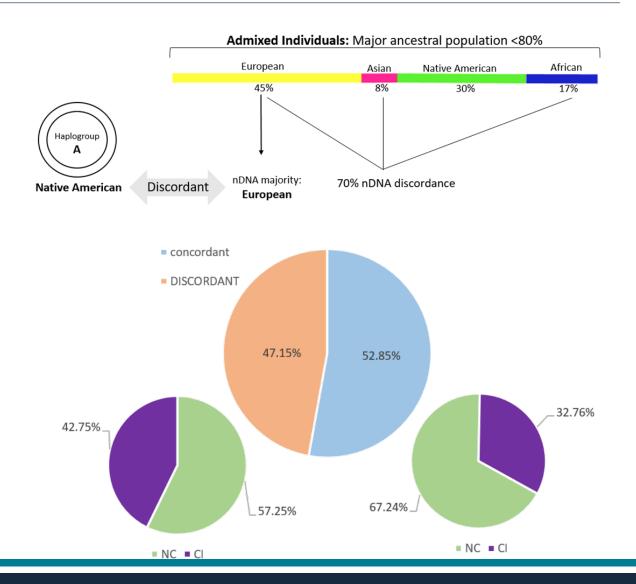


Background- Mitochondrial Genetics and MNC


Detailed map of mitochondrial haplotype migration patterns and conceptual schematic describing the role of nDNA admixture in mitonuclear compatibility (MNC) (Zaidi et al 2019).

Specific Aim 2- MtDNA genetics and MNC


Individual-level signatures of mitonuclear incompatibility Population 1 Population 2 Admixed population Individuals with mtDNA haplogroup 1 Individuals with mtDNA haplogroup 2 Nuclear ancestry from population 2



Mitochondrial Genetics and MNC in MAs

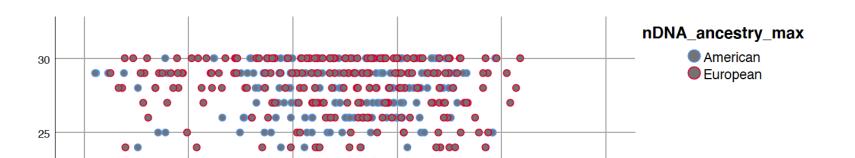
Mito-Nuclear Compatibility (MNC)

MMSE

15

10

.2000


.3000

Degree of MNC

Mitochondrial genetics- MNC

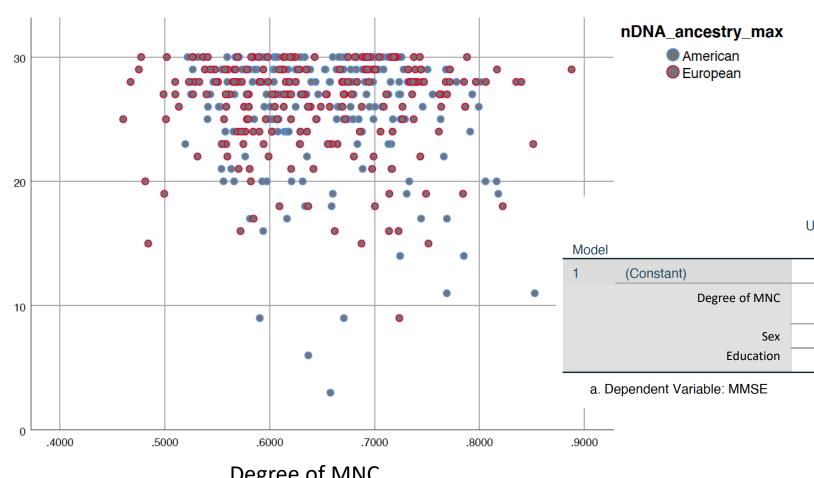
In MA with concordant global mtDNA:nDNA types

.6000

Degree of MNC -vs- MMSE

Partial correlation, controlling for sex and education

Correlation	.099
Significance (2-tailed)	.234
df	145


		Unstandardize	d Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1 (0	Constant)	19.918	1.228		16.221	.000
	Degree of MNC	4.145	1.992	.090	2.081	.038
	Sex	.721	.383	.081	1.882	.061
	Education	.338	.037	.395	9.030	.000
a. Depe	endent Variable: MMSE					

.7000

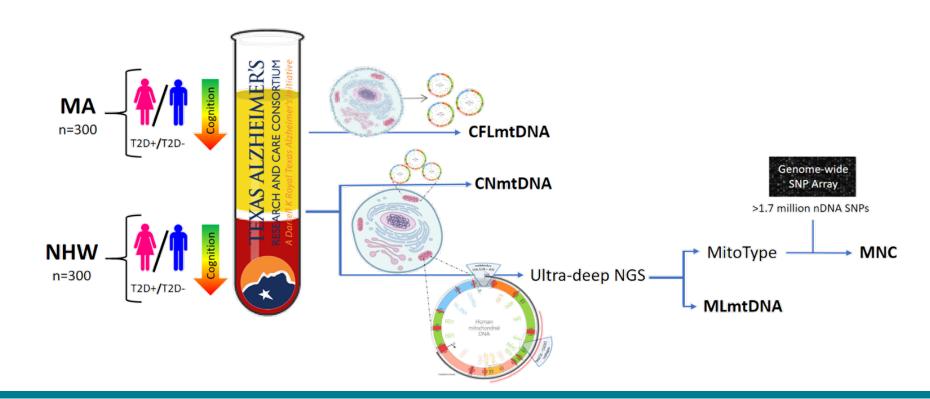
Mitochondrial genetics- MNC

• In MA with discordant global mtDNA:nDNA types

Degree of MNC -vs- MMSE

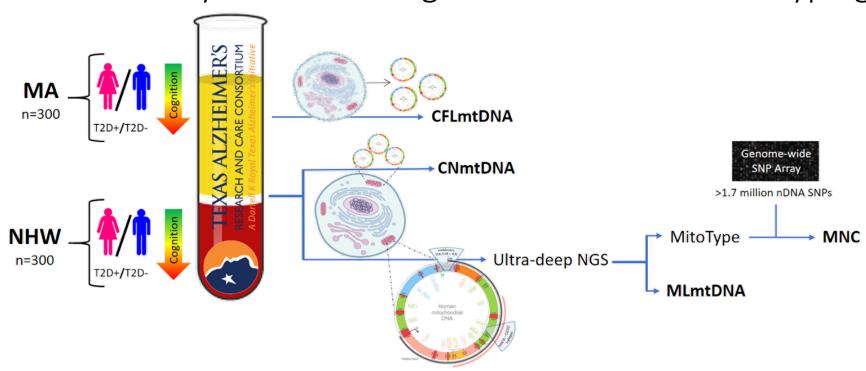
Partial correlation, controlling for sex and education

Correlation	194
Significance (2-tailed)	.017
df	148

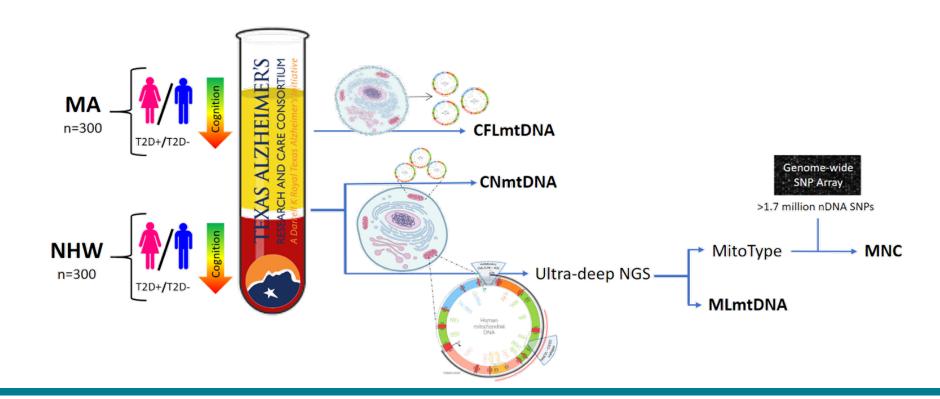

Standardized **Unstandardized Coefficients** Coefficients Std. Error Beta Sig. 24.206 1.721 14.066 .000 -5.229 2.358 -.098 -2.217.027 .788 .397 .048 .087 1.984 .403 .040 .446 10.116 .000

Degree of MNC

Next Steps and Long-term Goals


 Preliminary results point to several potentially interesting trends, particularly with respect to sex interactions; the full data set will be needed to power the study.

Next Steps and Long-term Goals


 A major goal of this research is to integrate multi-dimensional mtDNA phenotypic data which captures both genetic risk and environmental stressors in Mexican American women; copy number and cell-free data collection are underway as well has higher-resolution mtDNA typing.

Next Steps and Long-term Goals

 Additional analyses to include metabolic phenotypes (e.g., T2D, hypertension, etc.) will be conducted, along with comprehensive predictive modeling.

Thank you! Questions??

