
Analyses

A tutorial for bench scientists

SAMtools

squeue

SB
AT

CH

STAR

ls

faster-bump

prefetch
--partition

cat

list.�les()
nano

FileZilla

globus

wget

module spider

--n
od

es
=1

multiqc

fastqc *.fastq --extract -o fastQC_results

#!
/b

in
/b

as
h

#!/bin/bash
#!/bin/bash

#!/bin/bash

#!/bin/bash

#!/bin/bash

#!/bin/bash

#!/b
in/b

ash

#!/b
in/b

ash

#!/b
in/b

ash

samtools index

samtools index

samtools index

samtools index

samtools index

samtools index

module load

module load

module load

module load

module load

module load

module load FastQC

library(DESeq2)

library(DESeq2)

lib
rary(A

nnotatio
nDbi)

library(AnnotationDbi)

library(AnnotationDbi)

lib
rary(“o

rg
.H

s.e
g.db”)

library(dplyr)

anno <- �lter(anno, !duplicated(ENSEMBL))

anno <- �lter(anno, !duplicated(ENSEMBL))

ddsHTSeq

ddsHTSeq

dds

ls()

directory = getwd()

dire
cto

ry = getw
d()

module load

sampleFiles <- list.�les()

sb
atch

 H
TSeq_co

unt.s
lurm

sbatch HTSeq_count.slurm

sru
n –pty /b

in/b
ash

srun –pty /bin/bash

srun –pty /b
in/bash

srun --pty /bin/bash

STAR --runMode alignReads --runThreadN 12

STAR --runMode alignReads --runThreadN 12

By Kejin Hu

Using

cd /data/user/kejinhu

mkdir RNA_seq_tutorial

samtools view

faster-bump

anno <- �lter(anno, !duplicated(ENSEMBL))D
ES

eq
2

FA
STQ

ddsHTSeq <- DESeqDataSetFromHTSeqCount(sampleTable = sampleTable, directory = directory, design = ~ condition)

cpus-per-ta
sk

setwd()

ddsHTSeq

#!/bin/bash

#!/bin/bash

#!/b
in/b

ash

#!/b
in/b

ash

samtools index

module load

module load STAR

modue spider sra

library(DESeq2)

library(DESeq2)

lib
rary(D

ESeq2)

ddsHTSeq

ddsHTSeq

ddsHTSeq

sa
mpleFile

s <
- li

st.
�les()

module load

prefetch

sbatch

MultiQC
GTF
IGV
ls

srun
cd

bash

SLURM
squeue

FASTA

BAM

lscpu

SAM

cat
ls

rm

echo
wc

wget
FastQC

DESeq

dds

squeue
srun

q

*

head
cat..

STAR

dplyr

wget

less

tail

..

ls

BAM
cd

.. q

SAMtools

pw
d

prefetch

--partition

cat

list.�les()

nano

FileZilla

module spider

--n
od

es
=1

multiqc

fastqc *.fastq --extract -o fastQC_results

#!
/b

in
/b

as
h

#!/bin/bash

#!/bin/bash#!/bin/bash

#!/b
in/b

ash

#!/b
in/b

ash

samtools index

samtools index

samtools index

samtools index

module load module load

module load
module load

module load FastQC

library(DESeq2)

lib
rary(A

nnotatio
nDbi)

library(AnnotationDbi)

library(AnnotationDbi)
library(dplyr)

anno <- �lter(anno, !duplicated(ENSEMBL))

ddsHTSeq

dds

ls()

dire
cto

ry = getw
d()

module load

sb
atch

 H
TSeq_co

unt.s
lurm

srun –pty /bin/bash

srun –pty /bin/bash

srun –pty /b
in/bash

cd /data/user/kejinhu
faster-bump

q

help(DESseqDataSetFromHTSeqCount)

colnames(ddsHTSeq)

relevel()

relevel()

relevel()

resultsNames(dds)

resultsNames(dds)

resultsNames(dds)

res <- results(dds)
res <- results(dds)

res <- results(dds)

list.�les()

list.�les()

list.�les()
load(“.RData”)

load(“.RData”)

module load HTSeq

sbatch HTSeq_count.slurm

sbatch samtools-index.slurm

#SBATCH --nodes=1

#SBATCH --ntasks=1

samtools view -h my.bam | head

sbatch STARalign.slurm

sbatch STARalign.slurm

sbatch STARalign.slurm

sbatch STARindex.slurm

sbatch STARindex.slurm

sbatch STARindex.slurm

nano STARindex.slurm

#SBATCH --time=02:00:00

#SBATCH --job-name=genomeIndexing

cd /data/user/kejinhu

cd /data/user/kejinhu
cd /data/user/kejinhu

cd /data/user/kejinhu

cd /data/user/kejinhu
cd /data/user/kejinhu

cd /data/user/kejinhu

ssh user_name@hostname

ssh user_name@hostname srun --pty bash

srun --pty bash

srun --pty bash

srun --pty bash srun --pty bash

man nano

man nano

STAR --help

STAR --help

STAR --help
man sbatch

man sbatch

man sbatch

man sbatch

man samtools

man samtools

man samtools

cp *.count counts

cp *.count counts

for i in *1.fastq;

for i in *1.fastq;

for i in *1.fastq; --outSAMtype BAM Unsorted \

--readFilesCommand zcat

--readFilesIn

do samtools sort -o

#SBATCH --mail-type=FAIL

sampleFiles <- list.�les()

help(DESeq)

head(n=10, res)

as.data.frame()

columns(org.Hs.eg.db)

library(“org.Hs.eg.db”)

keytypes(org.Hs.eg.db)

save.image()

write.csv()

Open OnDemand

SLURM
sbatch

srun

sampleTable$condition <- factor(sampleTable$condition)

mkdir counts

mkdir counts

mkdir counts

do htseq-count -f bam -s no -r pos $i \#SBATCH --partition=medium

BAM

SAM

STAR DESeq()

results()

ls

q

cd

cp

mkdir
cat

mv

tailhead
exit

srun

pwdwget

module avail

Globus

--nodes=
--time=

--mem=
htseq-count

cd

sq
ue

ue
 -u

 k
ej

in
hu

squeue -u kejinhu
squeue -u kejinhu

squeue -u kejinhu

srun

sbatch

scontrol

wget

srun

SLURM

module load

scancel
nano

rsync

--partition=
--mem=

SAM
cd

BAM

kejinhu@login004 ~

ls -hl
cd

done

done

pwd

cp

ls

BAM

FASTQ

EMSEMBL

Linux R RStudio

R

R

HTSeq
R

cd
BAM

IGV

GTF

BAM

FASTQ
FASTA

SRR
SRA

SRA

SRR
R

getwd()setwd()
R

Linux

FastQC
MultiQC

RStudio

compute nodes

head node

DESeq2
SAM

lscpu

srun

SAM

--help

man

srun bash

srun bash

GTF

R

R

-n

-n
-N

-N

nproc --all

-n
-N

ls -a
SAM

multiqc *_fastqc.zip ddsHTSeq

--runMode
--genomeDir

--sjdbOverhang

IGV

GTF

pwd

--error =

--mail-user=

#SBATCH --nodes=1

STAR

DESeq2

BAM

SAM

-h

--help

cp

cp

--pty

cd

pwd-h

module load STAR
--runMode

sbatch STARalign.slurm samtools
#SBATCH

samtools view

samtools idxstats

htseq-count

list.�les()

load(“.RData”)

library(DESeq2)

STAR
R

Linux
SLURM

SBATCH

DESeq
R

STAR

STAR

SAM

dds

citation(“DESeq2”)

Globus

R

gunzip

DESeq2

Slurm

Slurm

SRA-Toolkit

HTSeq

htseq-count

module load

module avail

scontrol

cat

prefetch
pwd

mkdir

#!/bin/bash

#!/bin/bash

#!/bin/bash

samtools index

samtools index

library(“org.Hs.eg.db”)

save.image(�le= “myworkspace.RData”)

ddsHTSeq
sa

mpleFile
s <

- li
st.

�les()

samtools sort

module load

res = results(dds)

lscpu

ls

wc

exit

echo

rm

less

gunzip

--help

rclone copy

scontrol

squeue
srun

ls

wc

tail

SRA-Toolkit

IGV

wget

q()

MultiQC

FASTQ
SAM

BAM

GTF
FastQC

cp

cd

rm

*

anno

squeue

srun --pty bash

STAR

prefetch
SLURM

DESeq2SAM

FastQC

tail

less

STAR

RStudio

module avail

cd /data/user/kejinhu
keys=

keytype=

STAR
STAR

STAR
SRA

SAM

cd

pwd

sq
ue

ue
 -

ke
jin

hu

echosrun

dds

wget

ls
q

-r
rm

merge()

left_join()

tail
head-a

-a

pwd

R

mv

rm

R

R

R
R

STAR

mkdir pwd

q

q

q

q

q qls

ls

cp

cd

q()

q()
q

head()

head

HTSeq

help()

--help

help() R

pwd

for i in

-u

cat

exit

echo

less
lscpu
ls()

list.�les()

srun

sbatch

scancel

srun --pty bash

srun

sb
at

ch

--runMode R

pwd

sshssh

R

R

R

RStudio

cpu

pwd

wget

SAM
exit

pwd

cd

Hello World

Hello World

Hello World
Hello World

Hello World

Hello World SLURM

cd--h

--mem
-l-u -n

R

 1

Contents

List of contents ··· 1

List of figures ··· 4

About the cover ··· 5

Preface ··· 6

Summary ·· 7

Limitation ··· 8

Acknowledgement ··· 8

Chapter 1 Introduction ·· 9

Chapter 2 Work on HPC and transfer RNA-seq FASTQ data onto HPC ·······················14

2.1 Logon HPC account and generate directories ··15

 2.2 Find and locate a module on HPC with SRA-Toolkit as an example ……………. 20

 2.3 Locate the SRA data files in the repository to download ……………………….. 22

2.4 The prefetch command for downloading an individual SRA file ···················22

2.5 Use the fasterq-dump command to convert SRA a file into FASTQ file ………. 23

2.6 Download FASTQ files and work on a pseudo terminal ……………………….. 25

2.6.1 Request compute node resources ……………………………………… 25

2.6.2 Download and convert SRA files in two steps ………………………… 27

2.6.3 Convert the downloaded SRA file using multiple threading …………. 28

2.6.4 Download and convert SRA files at one step ………………………… 29

2.7 Upload FASTQ files onto HPC by other means ………………………………… 30

2.8 Chapter 2 Summary ……………………………………………………………… 32

Chapter 3 Request compute resources and QC RNA-seq data …………………………….. 33

3.1 Conduct QC of RNA-seq as an interactive job on compute nodes ……………… 34

3.2 Conduct QC as non-interactive job submitted by the sbatch command ………… 36

3.3 Speed up QC process using multiple threading …………………………………. 39

3.4 Submit computation jobs via web composer with QC as an example …………… 40

3.5 Review the FastQC results ………………………………………………………. 40

 3.5.1 Review QC results using nano text editor and Linux commands ……… 41

 3.5.2 Review QC results on HPC virtual desktop ……………………………. 43

 3.5.3 Review QC results on local desktop …………………………………… 44

3.6 Aggregate QC results using the MultiQC facility ……………………………….. 44

3.7 Chapter 3 Summary ……………………………………………………………… 46

Chapter 4 Generate reference genome indices ……………………………………………… 47

4.1 Download and unzip the annotation GTF file from ENSEMBL ………………… 48

4.2 Download and unzip the human genome FASTA files …………………………. 51

4.3 Generate human genome indices using the default threading …………………… 53

4.4 Fast generation of human genome indices using multiple threading ……………. 54

4.5 Chapter 4 Summary ……………………………………………………………… 60

Chapter 5 Align the sequence reads to the reference genome ………………………………. 61

5.1 STAR alignment of a single RNA-seq to reference genome ……………………. 62

 5.1.1 General STAR script for alignment ………………………………………….. 62

 5.1.2 Increase alignment speed with multiple threading …………………………... 63

 5.1.3 Conduct alignment as an interactive HPC job ……………………………….. 63

 2

5.2 Serial alignment of multiple RNA-seq samples ·······································64

5.3 Parallel alignment of multiple RNA-seq samples ……………………………….. 66

5.4 Briefly review the alignment output text files …………………………………… 70

5.5 Aggregate the Log.out files using MultiQC …………………………………….. 71

5.6 Explore the BAM files using SAMtools …………………………………………. 72

5.7 Chapter 5 Summary ……………………………………………………………… 75

Chapter 6 Sort, index and visually inspect the BAM files …………………………………. 76

6.1 The samtools sort syntax and sorting one sample ……………………………….. 77

6.2 Serial sorting and multiple threading at the data level …………………………… 77

6.3 Combine parallel sorting and multiple threading ………………………………… 78

6.4 Index the sorted BAM files using SAMtools ……………………………………. 79

6.5 Briefly review the BAM files ……………………………………………………. 81

6.6 Visual inspection of the alignments with IGV …………………………………… 83

6.7 Chapter 6 Summary ……………………………………………………………… 85

Chapter 7 Count the reads to features using HTSeq-count …………………………………. 86

7.1 Find out the strandedness of RNA-seq data using IGV …………………………. 87

7.2 Serial counting of reads to feature using the htseq-count command ……………. 87

7.3 Count reads of multiple samples by parallel operation using srun ………………. 89

7.4 Parallel counting by job array ……………………………………………………. 92

7.5 Briefly review the counted results in the terminal ……………………………….. 93

7.6 Chapter 7 summary………………………………………………………………. 95

Chapter 8 Analyses of differential expression using the DESeq2 package ………………… 96

8.1 Preparation of count files on HPC terminal ……………………………………… 97

8.2 Request resources for RStudio server ……………………………………………. 97

8.3 General preparation in RStudio for DESeq analyses ……………………………. 98

8.4 Generate the DESeq2 objects for DE analyses …………………………………. 100

8.5 Load DESQ2 package and get online help about DESeq2 …………………….. 103

8.6 Conduct analyses with DESeq2 ………………………………………………… 104

8.6.1 Prepare the raw DESeq data set (dds) ………………………………… 104

8.6.2 Set up the reference level and run the DESeq() function …………….. 105

8.6.3 Extract results using the results() function ……………………………. 107

8.6.4 Briefly review the results …………………………………………….. 107

8.6.5 Generate a table containing both statistics and counts ……………….. 108

8.6.6 DE analyses for a sample set with multiple levels ……………………. 109

 8.7 Chapter 8 summary …………………………………………………………….. 111

Chapter 9 Annotation and management of the DE result data frame ……………………… 112

9.1 Convert an S4 object of the DESeq results into data frame …………………….. 113

9.2 Add annotation to the table ……………………………………………………... 114

9.3 Review the data frame (tables) on RStudio ……………………………………. 117

9.4 Chapter 9 summary …………………………………………………………….. 118

Chapter 10 Work on the results data frame ……………………………………………….. 119

10.1 Remove rows/genes that are not expressed in all samples …………………… 120

10.2 Keep the genes/transcripts by the padj values ………………………………… 120

10.3 Keep the genes/transcripts/rows by the fold change values …………………… 120

10.4 Extract data for genes/transcripts using multiple criteria at on step ………….. 121

10.5 Extract all the RNA-seq data for a list of genes ………………………………. 121

 3

10.6 Save and re-load the entire workspace ·· 121

10.7 Save the DE results as csv files ……………………………………………….. 122

10.8 Chapter 10 summary ………………………………………………………….. 124

Appendix ………………………………………………………………………………… 125
Software used and their websites …………………………………………………… 125

Tools for data transfer to and from HPC ……………………………………………. 126

Linux Basics cheat sheet …………………………………………………………... 127

R packages used ……………………………………………………………………. 134

References ………………………………………………………………………………. 135

 4

List of Figures

Figure 1. Workflow of RNA-seq analyses …………………………………………….. 12

Figure 2. HPC web interface with Cheaha as an example ……………………………... 16

Figure 3. HPC login node terminal and HPC home directory …………………………. 17

Figure 4. Find out the partition information of your HPC …………………………….. 18

Figure 5. Logon to HPC via SSH from an iMAC terminal ……………………………. 19

Figure 6. Find out and load a Linux module …………………………………………… 21

Figure 7. Find out the RNA-seq data in the GEO repository to download ……………. 22

Figure 8. Download and convert RNA-seq data file from SRA repository ……………. 23

Figure 9. Download SRA files on the compute nodes as an interactive job …………… 27

Figure 10. Convert the downloaded SRA files to FASTQ files …………………………. 30

Figure 11. FileZilla as a tool for data transfer between local and remote HPC storage … 31

Figure 12. Conduct QC of the RNA-seq raw data with the FastQC software …………... 36

Figure 13. Write scripts in the nano text editor for a SBATCH file …………………….. 38

Figure 14. Submit a sbatch job ………………………………………………………….. 39

Figure 15. The Open OnDemand-based Web interface for SLURM job submission …… 42

Figure 16. The web composer interface ………………………………………………… 42

Figure 17. The Open OnDemand web text editor ………………………………………. 43

Figure 18. Aggregate the QC results using the multiqc command on a compute node … 45

Figure 19. ENSEMBL hyperlinks for downloading the GTF and FASTA files ………… 49

Figure 20. Snapshot for downloading human genome GTF file from ENSEMBL …….. 49

Figure 21. Download and unzip the human GTF file ……………………………………. 50

Figure 22. Download the human genome FASTA file using wget …………………….. 52

Figure 23. Writing indexing sbatch script file in the nano text editor ………………….. 55

Figure 24. Snapshot of the indexing process ……………………………………………. 59

Figure 25. Prepare STAR alignment script in nano text editor …………………………. 65

Figure 26. Screenshot for the alignment process ………………………………………... 68

Figure 27. Parallel alignments of 7 samples …………………………………………….. 69

Figure 28. Screenshot for alignment statistics in a file of _Log.final.out ……………….. 71

Figure 29. Aggregate the QC results of STAR alignment ………………………………. 72

Figure 30. Screenshot for sorting the aligned BAM files ……………………………….. 80

Figure 31. Visual inspection of RNA-seq alignment results with IGV …………………. 84

Figure 32. Parallel jobs start at the same time and run simultaneously ………………… 91

Figure 33. Management and review of the count tables …………………………………. 94

Figure 34. Request resources for RStudio server ……………………………………….. 98

Figure 35. Prepare DESeq2 R objects in RStudio ……………………………………… 100

Figure 36. Categorization of the condition variables in the sampleTable data frame ….. 102

Figure 37. Prepare the ddsHTSeq R object in RStudio ………………………………… 106

Figure 38. The first 6 features in the count table ………………………………………. 109

Figure 39. The first three features of the results-count table …………………………… 110

 5

About the cover

The background of the book cover is a word cloud of random bash/Linux commands, R

functions, software names, snippets of bash/Linux or R scripts, which have been used
in this tutorial. The four colors in the word of “analysis” represent the four bases in RNA.

 6

Preface

I am a cell biologist leading a small research lab in stem cell biology and cellular
reprogramming. As a PhD student back from 1999 to 2003, I investigated gene

expression by Northern blot analyses, and reverse transcription PCR (RT-PCR), which

are tedious but still provide very little information from the perspective of current

technologies. Nowadays, RNA sequencing (RNA-seq) is a commonplace experimental

tool for biological and biomedical sciences. My lab is of no exception. I started to use

RNA-seq technology after I established my own research laboratory in 2011. Amazed

by the astronomical and global information RNA-seq can provide, yet I was stranded in

analyzing the RNA-seq data of daunting size. Our institutional bioinformaticians gave

me critical support in the analyses of our RNA-seq data during those early years.

However, as a scientist I had an uncomfortable feeling of “being in the dark” when I did
not understand how those data are processed and analyzed. In addition, when I have

hundreds of gigabytes of data, I was not satisfied in that I need to wait for another 10

days or longer to see the statistical and normalized count data. Furthermore, the

bioinformaticians generally conduct standard analyses and customized or project-

specific analyses are not easy to achieve when you rely on someone else who is not quite
a former member of your research team. This motivated me to learn Linux, R, high-

performance computing (HPC), and many packages required for RNA-seq analyses. It

was not an easy journey for a scientist without a degree in computer science, data science,

or statistics. There were so much reading, googling, practicing, frustration, and email
communications with experts. I realize now that an end-to-end accessible tutorial will

save months of time for a bench scientist during this learning process. It took me around

one year to become proficient in RNA-seq analyses after starting this adventure. I

believe with this tutorial you may need just one month or even one week to become

competent in RNA-seq analyses. It may reduce the situations of frustration, googling,
and asking around. Given the pain I experienced in learning RNA-seq analyses, I would

like to make this tutorial available to my fellow scientists, postdoctoral fellows, PhD

students, and other lab workers. I hope this tutorial will quickly enable and empower

you. I dedicate this volume to the experimental scientists in biological and biomedical

sciences like me. Unlike the “abstract” tutorials from bioinformatics tool developers that
make you feel lost, this is a “foolproof” tutorial from a bench scientist for bench

scientists.

Copyright statement

All rights are reserved.

 7

Summary

RNA-Seq analysis software has been well-established and mature. High-performance

computing (HPC) has become available to the general science community, and this

makes RNA-seq analyses much easier. Scientists in biological and biomedical sciences

now can and should analyze RNA-seq data by themselves as in the case they use Excel,
Illustrator, PowerPoint, and the specialized software in their respective fields on a daily

base. With the infrastructure established, what the bench scientists need is an integrated,

complete, and enabling tutorial. The current tutorial serves this purpose and provides a

complete set of skills from end to end for RNA-seq analyses. The major packages

introduced here are FastQC and MultiQC for quality control, STAR for indexing of a
reference genome and sequence alignments, SAMtools for sorting, indexing and

reviewing of the BAM/SAM file data, IGV for viewing the resulting alignments, HTSeq

for counting reads of each feature, and DESeq2 for analyses of the differential

expressions on the RStudio platform, all of which are widely used software in the RNA-

seq field. The introduced skills include but are not limited to uploading of raw RNA-seq
data to HPC, management of the data, downloading of the reference genome sequences

and their annotations from the public database, generation of the reference genome

indices, quality controls of the sequencing data, alignment/mapping of reads to the

reference genome, sorting and indexing of the BAM file data, counting of reads to the
features, review of data in various formats at each major step, differential expression

analyses, combining of the result and read count tables, annotation of features in the

result data frame, saving of the resulting data, and transfer of data to local storage from

HPC. With the novices in mind, the very basic Linux commands are introduced in the

context of RNA-seq analyses. It also introduces many basic skills about use of the HPC
platform such as module usages, resource request using SLURM, and file managements.

Taking advantage of HPC, this tutorial introduces the optimized procedures for the

entire pipeline, which can significantly reduce the pipeline time so that one can complete

analyses in less than one day for a typical RNA-seq project of most labs. This is

achieved by multiple threading at the data levels (i.e., simultaneous
calculation/processing of data of one individual sample) and parallel calculation at the

sample levels (i.e., simultaneous calculation/processing of many samples) at different

major steps using various skills.

Keywords

RNA-seq, RNA-seq analysis tutorial, STAR, HTSeq, DESeq2, FastQC, MultiQC,

SAMtools, high-performance computing, SLURM, HPC, nano, Linux, R, RStudio,

SRA-Toolkit, IGV, FASTQ, BAM, Globus, FileZilla

 8

Limitations

This tutorial aims to empower and motivate newbies of RNA-seq analyses. As a primer
to RNA-seq analyses, it provides the basic procedure of a selected pipeline so that the

audiences can independently conduct the end-to-end procedure, but it does not provide

comprehensive procedures for any software introduced here. For complete software

documentation, extensive tutorials and advanced skills, audiences should consult the

original literature and individual tutorials of each software (SRA-Toolkit, STAR,
HTSeq, FastQC, MultiQC, IGV, nano, SLURM, DESeq2, Linux, R, RStudio, and

others). There are other pipelines, but this tutorial uses the popular STAR for alignment,

HTSeq for counting of reads, and the widely used DESeq2 for analyses of differential

expressions. After you become proficient with one pipeline it is not difficult to establish

another pipeline by your own.

Acknowledgement

I am indebted to the UAB HPC team, who provided a lot of support to me via Zoom
during the virtual office hours when I initially needed assistance using HPC. I dedicate

this book to my wife, Zhihong Xu, and my teenage son, Drakeson Hu, who are the

motivation for my everyday work. I thank Dr. Da Yan, an assistant professor in the

Department of Computer Science, UAB, who always replied to my emails in a timely

manner with answers to my questions when I converted from Windows to Ubuntu and
analyzed my RNA-seq data on a surplus PC. I also give my special thanks to Drs. Tim

Townes, Louise Chow and Igor Slukvin who have always been supportive of my efforts

and ambitions. I am very grateful to the Linux, R, and bioinformatics communities; there

are always answers to my questions out there on the internet because of these

outstanding communities. Finally, I greatly appreciate the friendship of Dr. Kevin
Pawlik. Science is fun. Being in academia is challenging. Every long day of work, taking

a break to chat with Kevin is like a cup of coffee for coffee drinkers.

 9

Chapter 1

Introduction

 10

RNA sequencing (RNA-seq) has become a commonplace tool in biological and

biomedical sciences. The cost of an RNA-seq run is at the level of or less than that of a
vial of a common antibody but the information from an RNA-seq experiment is

astronomical and global compared to that of a western blot or an RT-PCR experiment.

To most laboratories, the bottleneck is at the stage of data analyses, and bench scientists

heavily rely on the full-time professional bioinformaticians. Bioinformatics service is

frequently not available to many underprivileged laboratories especially in the current
funding situation. Even for the research groups with bioinformatics support, the ability

for a bench scientist to analyze RNA-seq data has much benefit and can make a

difference in scientific discoveries. RNA-seq analysis tool/software has now become

established and mature. Progress in infrastructure in both software and hardware

development now makes it possible that a bench scientist can readily analyze RNA-seq
data given an accessible, enabling, and end-to-end tutorial.

RNA-seq analyses generally require skills in Linux and R programming. This

prerequisite discourages many bench scientists to analyze RNA-seq data. Learning

Linux command lines seems difficult, but I agree with the statement that “it’s not that
it’s so hard, but rather it’s so vast” 1. The fact is that Linux is easy! It just has too many

Linux commands. The good thing is that we do not need a lot of commands to conduct

RNA-seq analyses. A survey by the Standish Group indicates that less than 5% of the

functionalities of any application software are generally used by an ordinary user 2. I
regularly use Word, Excel, PowerPoint, Illustrator and Photoshop, but I may just use

less than 5% of their functionalities. We just need a small fraction of the command

reservoir to conduct RNA-seq analyses although it involves two major platforms (Linux

and R platforms) and many Linux modules and R packages. This tutorial will introduce

these <5% of the commands in those packages needed to analyze RNA-seq data
efficiently and professionally. Of course, you could become an advanced user of Linux

after you are on board. The most difficult time is at the beginning when you adventure

to a new area.

RNA-seq analyses generally need at least a high-end desktop computer, a workstation,
or a server because of very high requirement on computational resources. For example,

the popular and fast aligner STAR requires at least 32 gigabytes (G) of RAM for RNA-

seq alignments to the human genome 3, 4. Almost all research universities now have or

have access to a high-performance computing (HPC) or supercomputing facility. With

HPC we usually do not worry about the memory and storage, which are the two major
limiting factors in using a desktop computer for bioinformatics. RNA-seq analyses need

Linux system and many Linux-oriented software. Even though you have a decent

desktop or workstation the installation and configuration of various specialized software

are a headache for bench scientists since you need to use command lines to install and

configure the specialized software. At the beginning, I took a surplus PC with 32 G of
RAM, replaced its Windows with Ubuntu, and installed the specialized software for

RNA-seq analyses. I nearly gave up at this frustrating stage. With HPC, you do not need

 11

to install the software. Many widely used software modules have already been installed

on the clusters by your HPC team, and you just load the required software to use.
Additional advantage is that we can easily work anywhere with HPC, which is difficult

to achieve with your desktop computer or workstation. Last, more HPC facilities are

adopting the web interface, and this reduces the barrier to HPC access new users usually

encounter with the traditional SSH (secure shell) interface and command lines needed

to conduct basic communication with HPC. Even without web interface, using HPC is
not arcane, and in fact HPC is very simple to use. We just need the basic Linux skills,

and skills about job submission and the specialized software for your analyses.

RNA-seq analyses require many Linux and R software packages, and the

documentations for the software are highly specialized but are not very helpful to most
biological and biomedical students/scientists. In addition, those documentations are

isolated and package specific. With the bench scientists in mind, I thus provide notes

even for many basic Linux and R commands. I truly believe one more page may not cost

a dime in this era of digital storage, but it will save an audience hours of time and reduce

googling and frustration, and even keep the audiences from dropping in this usually long
and frustrating learning process. However, the audiences need some basic knowledge

about Linux and R platform. For those without any prior Linux experience, I was one of

you. I started with the book of “Learn Linux in 1 Day” by Krishna Rungta, “Learn Linux

Quickly” by Ahmed Alkabary, and the more scholarly “The Linux Command Line” by
William Shotts 1. Readers can also refer to the Linux primer: “Essential Linux” as

Appendix B in the textbook of “High-performance Computing – Modern Systems and

Practices” 5. A great news is that many essential skills mentioned in the primers are in

fact not necessary for RNA-seq analyses. R is even easier with the availability of

RStudio. I have provided brief introductions to R in two other tutorials 6, 7. I learned R
by reading and practicing the books of “The undergraduate Guide to R” 8 and “An

introduction to R” 9.

Different sets of software can be used for RNA-seq analyses, and this tutorial uses the

popular and ultra-fast STAR for alignment, the widely used HTSeq for counting, and
the trusted DESeq2 for analyses of differential expression of genes. It employs the

widely used SLURM (Simple Linux Utility for Resource Management) for HPC

resource managements (https://slurm.schedmd.com/).

Figure 1 provides the workflow of RNA-seq analyses introduced in this tutorial. In this
tutorial, the Linux commands, R functions and scripts will be indicated by red text. The

notes and comments after scripts will be indicated by a pound sign #. Many supporting

commands are included in the comment parts after the major commands/scripts. The

scripts and comments about them are also distinguished by the DengXian Light font of a

smaller size than the Times New Roman font used in the main text. Some screen outputs

are included as blue texts, but the outputs of a command or computational task are

usually not included because of space consideration.

https://slurm.schedmd.com/

 12

Figure 1. Workflow of RNA-seq analyses. Green texts by arrows indicate

processes/procedures; red texts, data/file statuses; black texts by arrows,

package/software or command names.

 13

An RNA-seq project involves multiple samples and processing of individual samples

using various software at different steps requires a lot of hands-on time. Serial
processing of all the samples using one script with the bash for loop significantly

decreases the hands-on time. This introduced strategy, however, does not reduce the

machine time although it releases you from tedious typing. I addition, serial calculation

may not make good use of the HPC resources and compute power. This tutorial therefore

has also provided an optimized pipeline so that analyses of a typical RNA-seq project
can be completed within one day. Taking advantage of the computation power of HPC,

the fast pipeline is achieved by use of multiple threading at the data and sample levels,

and parallel processing at the sample levels at various major steps. The following table

depicts the differences for the optimized and non-optimized procedures.

Regular and optimized computing time for the major steps

Steps Optimized (minutes) Regular/not optimized

Downloading RNA-seq data 6 36 minutes

QC the 14 FASTQ files 3 28 minutes

Indexing human genome 21 3 hours 13 minutes

Alignment of 7 RNA-seq(paired-end) 10 30 minutes to > 4 hours

Sorting of the 7 BAM files 5 105 minutes

Indexing of the 7 BAM files 1 7 minutes

Counting of the 7 samples 84 > 8 hours

Total computing time 130 minutes > 14 hours

Notes:

1) The computing time for DESeq2 steps are not included since the machine running

time is not a limiting factor and the hands-on time dictates the total job time.

2) The above times are based on 7 human RNA-seq samples of paired-end

sequencing with reads/sample ranging from 28 to 48 million and total reads of
280.4 million (average 40.1 million/sample), which are the typical sizes (for both

sample number and sequencing depth) of an RNA-seq project for most labs.

3) The speed optimization is achieved by multiple threading at the data levels or

parallelism at the sample level, or both, as well as use of the ultrafast aligner

STAR.
4) The times at each major step above were the test results on the Cheaha clusters.

Platform and test data

This tutorial was written in Microsoft Word for Mac version 16.63.1 on the macOS Big Sur

version 11.3.1 with additional use of Adobe Illustrator and the screenshot function of iMAC.

The RNA-seq pipeline was established and tested on Cheaha, which runs Red Hat Enterprise

Linux (version 7.9) with the Open OnDemand portal. The DESeq analysis step was carried out

on the RStudio server of Cheaha. This tutorial uses 7 published human RNA-seq samples of

two cell types with an average sequencing depth of 40 million/sample, which are available from

the GEO database.

 14

Chapter 2

Work on HPC

and

Transfer RNA-seq FASTQ data

onto HPC

 15

FASTQ files are generally what a bioinformatician starts with in his/her analyses of

RNA-seq data. Your raw RNA-seq data in the FASTQ format may sit in a sequencing
facility, a database, or your local storage. This chapter therefore introduces different

methods for transferring your raw RNA-seq data onto HPC for analyses.

2.1 Logon your HPC account and generate project directories on HPC

Nowadays, supercomputers usually have or will have an intuitive and easy-to-use web

portal. This tutorial thus introduces access to HPC via a web portal powered by Open
OnDemand developed at the Ohio Supercomputer Center (OSC) 10, on a browser. The

access to HPC via SSH terminal is also introduced but it is more “exotic” to the

biological and biomedical scientists/students. Open OnDemand has been used by many

universities including Harvard, Yale, Stanford, Princeton, Caltech, and others. Your

HPC web portal may have a different name (e.g., HPC web interface, HPC gateway,
HPC board, or others) and appears different, but upon login you will use almost the same

codes/commands introduced in this tutorial.

You need a HPC account to access your HPC. Login to your HPC account via the web

portal (at rc.uab.edu in the case of Cheaha on the campus of University of Alabama at
Birmingham, UAB) using your credentials. If you do not have an account yet, contact

your HPC team to setup your account. After login, you can go to the HPC shell terminal

by clicking the “>_Cluster Shell Access” in the pulldown menu under the Clusters tab

on the HPC web dashboard (Cheaha in this tutorial) (Figure 2). This will take you to
your home directory on the HPC login nodes as indicated by a tilde ~ sign (Figure 3).

The login node is indicated by UserName@loginNNN (underlined in red in Figures 3,

5 and other screenshots).

HPC may use different Linux distributions. If you are curious about which Linux your
HPC is using you can find out by issuing the following command after the dollar prompt

sign $ in the shell terminal,

 lsb_release -a # Cheaha uses Red Hat Enterprise Linux. Your HPC may use

Debian, Ubuntu, or others. Alternatively, you can find similar information by calling

cat /etc/*release.

You can find out the full path to your home directory using the pwd (Print Working

Directory) command after the $ prompt sign (the first command in Figures 3 and 5),

pwd # This outputs the full path to your working directory on your terminal screen.

If you are curious about what your HPC login nodes look like, you can see the

specifications of your login nodes by calling the display/list CPU command lscpu (the

second command in Figure 3),

 16

lscpu # The output of this command gives information about the login node CPUs

(The contents between commands lscpu and ls in Figure 3).

To see the subdirectories/files on your home directory, issue the list command ls (the

last command in Figures 3 and 5),

ls # The ls command here outputs a list of subdirectories of my home directory

/home/kejinhu, which are in blue text (bottom in Figures 3 and 5), and files (black in

Figure 5, i.e., tutorial.RData). The Linux term “directory” is equivalent to “folder” in

Windows.

Upon login onto Cheaha, there is a table summarizing the partition categories on the

HPC dashboard (similar to the partition table in Figure 5; not captured in Figure 2). You

can also see such a partition table in the Cheaha shell terminal. Please note that your

HPC may have a different set of partition names and different specifications depending
on the capacity of your HPC. This is essential information when you will request

compute node resources using the Simple Linux Utility for Resource Management

(SLURM) job scheduler. In the case that your HPC does not have this summary table

for partitions on the web portal and/or login node front page, you can always find out

the detailed information about your HPC partitions using the following code,

scontrol show partition # This outputs information about all partitions of

your HPC (Figure 4). You can print out information about a specific partition by

specifying the name of the partition, for example, “scontrol show partition short” will

output the information about the short partition of Cheaha.

Figure 2. HPC web interface with Cheaha as an example. The pulldown menu for

Clusters (the grey tab) is extended and the Shell Access menu is exposed in this

screenshot.

 17

Alternatively, you can also login your HPC account via the traditional secure shell (SSH)
on your desktop device terminal (Figure 5). Upon login, the commands are the same

regardless the device you use or the interfaces (web portal or SSH) although the screen

appearances may vary.

ssh kejinhu@cheaha.rc.uab.edu # The syntax is ssh user_name@hostname.

After this command, the HPC system will ask you for the password. Please do not be

nervous when you do not see the password during typing because they do not show

(top in Figure 5).

We will conduct the analyses and save the results in the data directory. You use the cd
(Change Directory) command to change the working directory from your home

Print the path to the working directory

List CPU information for
the current nodes

List files/directories in the working directory

Figure 3. HPC login node terminal and HPC home directory. Login node name is

underlined in red. The lscpu command reveals that the Cheaha login nodes have 2 nodes

and 96 CPUs. The ~ after the login node name indicates that you are in your home

directory. Each Linux command is described in yellow text immediately after the command

as marked by a #.

mailto:kejinhu@cheaha.rc.uab.edu

 18

directory to your data directory (Figure 6). For convenience, I use my data directory on

Cheaha, /data/user/kejinhu as an example; therefore, I issue cd /data/user/kejinhu in my
HPC home directory,

cd /data/user/kejinhu # This takes me to the /data/user/kejinhu directory (the

second command in Figure 6). For additional usage of the cd command, see the 6th

and 9th commands. Please note that the home directory sign ~ has been replaced

by the subdirectory names of each data subdirectory, i.e., kejinhu, RNA_seq_tutorial,
and fastq_files in Figure 6. Upon in these directories, you can use the list command

ls to see their contents (the 3rd, fifth, and 8th command in Figure 6).

Under your data directory of HPC account, generate a directory of RNA_seq_tutorial
using the “make directory” command mkdir (the fourth command in Figure 6),

Find out partition information
 of your HPC

Figure 4. Find out the partition information of your HPC using the scontrol show

partition command. The screenshot captured information for some of the partitions only

(interactive, short, long, and a little of medium).

 19

mkdir RNA_seq_tutorial # This generates a directory of RNA_seq_tutorial

within which you will further make a subdirectory of fastq_files later.

cd RNA_seq_tutorial # This takes you into the RNA_seq_tutorial directory (the

sixth command in Figure 6).

Then, prepare a subdirectory of fastq_files within the RNA_seq_tutorial

directory (the 7th command in Figure 6),

mkdir fastq_files # This generates a fastq_files subdirectory into which you will

transfer your original RNA-seq data files in FASTQ format (Figure 6).

cd fastq_files # This changes the working directory from the current

working directory of RNA_seq_tutorial to the fastq_files directory (the 9th command

in Figure 6).

Figure 5. Login HPC via SSH on an iMAC terminal. The partition table is also

captured in this screenshot. You can see the same table but with slightly different

appearance when you login via the web interface. ~ indicates the home directory.

Login to HPC via secure shell

 20

2.2 Find and load a module on HPC with the SRA-Toolkit module as an

example

To analyze RNA-seq data on HPC, we first need to move the original raw data in

FASTQ files onto your HPC. To this end, a software or a module is required. Your
FASTQ files may be stored in various places. The best tools for transferring data to HPC

depend on where the FASTQ files are stored. In this tutorial, we will download the

RNA-seq data from the Sequence Read Archive (SRA) repository. The customized tool

for downloading data from the SRA repository is the SRA-Toolkit. Your HPC should

have the SRA-Toolkit module installed already if your institution has a community of
bioinformaticians. Many versions of a module are usually installed on any HPC, and the

command module spider is very helpful to find out the available versions of a specific

software.

module spider sra # This returns a list of SRA-Toolkit of various versions

installed on your HPC (in the lower middle of Figure 6). The command module avail

functions similarly (see below).

Then we load the SRA-Toolkit using the command of module load (Figures 6 and 8).

“module load” is the command equivalent to “clicking on an application icon” in

Windows. In Windows system, we click to invoke an application software (for example,
Excel or Word) and their specific functions. In Linux, we use command lines to

communicate with the computer.

module load SRA-Toolkit # This loads the default version of the SRA-Toolkit

(Figures 6 and 8). Please note that the module name for the module load command

is case sensitive, but it is not for the command of module spider or module avail (see

below). If you encounter issues in loading the SRA-Toolkit module (or other

software), please try a different spelling. The best practice is that you copy the entire

module name with the version information and paste them after the module load

command, for example, module load SRA-Toolkit/2.10.7-centos_linux64. You can

call module avail sra after loading it, and you will see which version has been loaded.

The loaded version is indicated by an “L”. When you do not include the version

number the default version is loaded. The default version is indicated by a “D” when

you output the module information using “module avail”. For module spider, you do

not even need to spell out the full name of a software package, for example, you

can issue module spider sr, and it will return all the SRA-Toolkit versions available

on your HPC. This is also true for module avail. Try module avail sr.

 21

Figure 6. Find out and load Linux modules using the commands of module

spider and module load. Other Linux commands were also captured in this

screenshot. Please note that this screenshot is not a full-screen screenshot, and

some information was cut off. The yellow texts are illustrations by the author.

Print path to the working directory

Change directory

List files/directories

Make
directory

List files/direcotries

Find out
 module
information

Load module

 22

2.3 Locate the SRA data files in the repository to download

In this tutorial, we will use the RNA-seq data set of human embryonic stem cells (hESCs)

and human fibroblast BJ cells with the Gene Expression Omnibus (GEO) series access

code of GSE138170 11. In the GEO accession query box at

https://www.ncbi.nlm.nih.gov/geo/ , you search for GSE138170 (shaded in yellow in

Figure 7). When you open the GEO page for this dataset, you will see there are 7 samples
under the Samples entry (on the left column of the page). Click the HTML text More

(or the plus sign + thumb nail by the More; they will become “- Less” after clicking),

and you will see the GEO sample (GSM) codes for the 7 samples (GSM4101203 –

GSM4101209). After you click any of these 7 HTML sample codes, you will see a page

containing information about the selected RNAs-seq data. At the bottom of this page,
you can see the SRX codes. The SRX codes for these 7 RNA-seq are: SRX6923623 -

SRX6923629. Click one of the HTML SRX codes and you will see a new page about

the selected sample. At the bottom of the page, you will see the SRR code in a table.

The 7 SRR accession codes are: SRR10203569 - SRR10203575. We will use these SRR

codes to download the data sets using methods introduced below.

Alternatively, under the “Relations” section on the GEO series code (GSE) page, click
on the clickable HTML SRA project code (SRP code) and you will land on a page with

the list of the GEO sample codes. Now, you can also locate each SRA code via the GEO

sample codes described above.

2.4 The prefetch command for downloading the SRA files

For the purpose of demonstration, this section introduces downloading each data file
using the SRA-Toolkit command prefetch on both the login nodes (not encouraged) and

a compute node (see below),

prefetch SRR10203569 # This downloads the data for the SRR10203569

sample (Figure 8). It automatically generates a directory with the entry code as the

Figure 7. Find out the RNA-seq data in the GEO repository to download. The GSE138170 accession code

in the GEO search box is shaded in yellow.

https://www.ncbi.nlm.nih.gov/geo/

 23

directory name containing the file of SRR10203569.sra. Use the command ls to see

the resulting directory of SRR10203569. You can go inside the SRR10203569

directory using cd SRR10203569, and see the file using the ls command (Figure 8).

To come back to the parent directory, i.e., fast_files directory, simply issue “cd ..”.

The“..” here represents parent directory (Figure 8). You can download several files at

one command, for example, prefetch SRR10203569 SRR10203570. This single code

would download the files for these two samples. You can find the help page of the

prefetch command by calling, prefetch --help after you load the SRA-Toolkit

module.

2.5 Use the fasterq-dump command to convert SRA files into FASTQ ones

After you run the above code on the login nodes, you will see a subdirectory with a name

of the sample code under the directory of fastq_files. You can convert the SRA files into

FASTQ files using the SRA-Toolkit command fasterq-dump on the login node (not

encouraged) outside the subdirectory,

fasterq-dump SRR10203569 # This generates two FASTQ files

(SRR10203569_1.fastq and SRR10203569_2.fastq) outside the SRR10203569

Figure 8. Download RNA-seq data from SRA repository using the prefetch command,

and convert the SRA files into FASTQ files using the fasterq-dump command. The

subdirectory generated automatically is in blue text. The yellow texts in the screenshot

are illustrations added by the author.

Load the SRA-Toolkit module

Download a sigle SRA file

Go to the directory with the .sra file

List the file in the SRR10203569 directory

List with the -h and -l options (combined use)

Go back to parent directory

Convert a sra file
 to a FASTQ file

List with the -h and -l options (combined use)

On-screen progress reports

Output
of

the ls
command

Go to the directory of SRR10203569

List the file inside the directory SRR10203569

Underlined here is the current working directory

Output of the ls command

List the directory contents

 24

subdirectory under the fastq_files directory because the RNA-seq protocol is paired-

end sequencing (bottom in Figure 8). Please note that SRR10203569 here is the

directory name instead of the file name when you will convert inside the subdirectory

(see below). Call fasterq-dump --help to find more information about its use.

You can also make the conversion within the SRR10203569 subdirectory. Go to the

subdirectory, and you will see an SRA file within it. You can convert the SRA file into

FASTQ files using the command of fasterq-dump (Figure 8),

cd SRR10203569 # This takes you to the subdirectory of SRR10203569.

fasterq-dump SRR10203569.sra # This also converts the SRA file into two

FASTQ files, i.e., SRR10203569_1.fastq and SRR10203569_2.fastq (Figure 8). But,

these two FASTQ files are located within the SRR10203569 subdirectory. The code

is the same on the login node and the compute node (see below). Please note that

you use the file name SRR10203569.sra here (instead of the subdirectory name when

you convert outside the subdirectory (see above).

You can see the converted FASTQ files using the list command ls with the -h and -l
options (the last command in Figure 8),

 ls -hl # The -l option means “long format” and the -h option means the file sizes are

displayed in the human readable form. The -l and -h options can be used separately (-h -l) or

together as -hl.

Before we move to the next step, we remove the downloaded files and subdirectory

using the generic rm (remove) command so that we can experience the downloading of

the same item again on the compute nodes.

cd .. # This will bring you back to the parent directory, i.e., the fastq_files

directory. In Linux, double dots (..) mean parent directory of the current directory,

and a single dot denotes the current directory.

rm SRR10203569_1.fastq SRR10203569_2.fastq # This removes the two files

listed after rm and rm can remove all files listed after it.

Alternatively, we can use a wild card * here to remove the two files altogether with the

same extension of .fastq using a simpler code,

rm *.fastq # This removes all files with the extension of “.fastq”within the current

working directory. Make sure this is what you want to do.

 25

You still have another copy of the FASTQ files and the subdirectory of SRR10203569

since we have converted twice. Now remove the subdirectory and the two FASTQ files
within it using the rm command,

rm -r SRR10203569 # This removes the directory of SRR10203569 and all the

files within it. Unlike deleting a file(s), you need to use the recursive -r option when

you remove a directory even though it is empty.

Use the list command ls to confirm that the subdirectory and files are deleted,

ls

2.6 Work and download FASTQ files on a pseudo terminal

2.6.1 Request compute node resources

It is not encouraged (literally not allowed) to download large files on the login nodes of
an HPC because there are limited resources on the login nodes that are dedicated for

HPC login, light file managements, code editing, and job submission only 12. We should

download the FASTQ files or conduct any other intensive computation on the compute

nodes. To this end, we first need to request compute node resources because you are on

the login nodes when you log in to your HPC.

There are many different resource managers. Here we use the free open-source and most

dominant resource management system SLURM (Simple Linux Utility for Resource

Management) 13, 14. Since this downloading is not a very heavy job, we can try to request
an interactive job using the srun command. If your HPC uses other software for resource

management (e.g., Portable Batch System, OpenLava, LoadLeveler, and others), you

may need training from your HPC team or study the related tutorials. Upon allocation

of the compute resources (nodes, CPUs, time, memory, and others), the application

scripts discussed here are the same regardless the resource management systems used.

srun --cpus-per-task=2 --mem=10G --partition=express --pty /bin/bash

The above code will generate a pseudo terminal interface on which you can work on

compute nodes with the allocated resources (Figure 9). On the compute node, you can

work like on the login node, but you do not consume the resources specified for login to

HPC by all users. In the above code, we request 2 CPUs (using the one-letter option of

-c or the equivalent word option of --cpus-per-task), 10 G of minimum memory (using
the option of --mem), and the express partition. You can also use the --mem-per-cpu

option to request memory per CPU. The two options --mem and --mem-per-cpu are

related but different. In the latter case your total minimum memory (defined by the --

mem option) is the product of memory/CPU and the number of CPUs. Please note that

 26

the partition names on your HPC are likely different from that of Cheaha. The --pty

option means initiating a pseudo terminal. The /bin/bash is a srun command, which
means your codes will be interpreted by bash. You may just call, srun --pty bash, and

this will bring you to the psedoterminal bash shell with the default amount of compute

resources. After you run the above code, you will see you are not on your login node

anymore and the prompt will change from the login node (kejinhu@login004 in my case)

to a compute node (kejinhu@cNNNN in my case) (Figure 9).

To exit the pseudo terminal, you just call the command exit. When you run the exit

command you give up your allocated compute resources even though it is before your

requested time limit. Or you can use the scancel SLURM command. To do this, you

need to find out the job ID first using, echo $SLURM_JOB_ID, and then scancel
NNNNNNNN (the job ID you identified by the echo command). The job ID can also be

found using, squeue -u kejinhu (your username of HPC; the -u option means user).

Please note that if you just click the tab on the web interface to close the pseudo terminal,

you are still holding the srun resources. You need to use the exit command to give up

the compute nodes you have requested using srun. The exit command just gives up the
compute nodes, and you go back to the login nodes. You need to call exit again to leave

the login terminal if you want.

To see the basic information about a SLURM job including the number of CPUs, and
memory allocated, you can use the syntax below,

scontrol show job [job ID#]

When you simply request compute node resources for interactive tasks using srun --pty
/bin/bash, or even srun --pty bash, Cheaha allocates one CPU from one node, and 1G of

memory, at the express partition with a maximum wall time of 2 hours, by default. This

resource is sufficient to download the 7 RNA-seq samples using the fasterq-dump

command. My experience is that you should allow 1 minute to download 1 G of RNA-

seq data using the fasterq-dump command with the srun-requested resources on Cheaha
by default. The command fasterq-dump is faster and simpler to use than the old fastq-

dump. The --time option can be used with srun to require more time (> 2 hours).

Once compute nodes are allocated to you, you can find out the information about the

nodes using the lscpu command. The command nproc --all will print out the number of
processors on the allocated nodes. You can find out the node names that assigned to you

using the hostname command. Of course, you can also use these three commands to find

the information about the login nodes. But you use scontrol show job [job ID#] to find

out the resource information allocated to you as introduced above.

 27

2.6.2 Download and convert SRA files in two steps (faster procedure)

With the requested resources using the SLURM command srun, we can download the

files on the compute node in interactive mode (Figures 9 and 10),

module spider sra

 module load SRA-Toolkit # If you have loaded the package on the login nodes

the information is passed to the compute nodes you have just requested using srun,

and you do not need to re-load the package again on the compute nodes.

cd /data/user/kejinhu/RNA_seq_tutorial/fastq_files/ # Please note that

you are in the directory where you run the srun command. If this directory is not

Figure 9. Download SRA files using prefetch on the compute nodes in interactive mode.

Please note that the operation is on the c0198 compute node (kejinhu@c0198, yellow

underline), not on the login node (kejinhu@login004, red underline). Yellow texts

marked with a # are description of the codes. We run prefetch in the directory of

fastq_files (green underline) because it is in the interactive mode. In the interactive mode,

you can see the downloading progress report on your screen (red vertical line).

Request resources

Change directory to the RNA_seq_tutorial directory
Load the SRA-Toolkit

List the files and subdirectory of the working directory

Downlaod the SRA files using prefetch

Print out the working directory

Go to the destination directory, fastq_files
Print the path to the working directory

Progress reports

as standard output

for the 7 downloading

 28

what you want to work in, you should change your directory to the one you want

using the cd command.

prefetch SRR10203569 SRR10203570 SRR10203571 SRR10203572 SRR10203573

SRR10203574 SRR10203575 # It took only 4 minutes to download the 7 SRA files

using the prefetch command with the default resources on Cheaha (1 CPU, 1G of

memory). However, the time will vary depending on the time of downloading. On

weekend, it may be faster and in the peak times it may take longer.

fasterq-dump SRR10203569 SRR10203570 SRR10203571 SRR10203572

SRR10203573 SRR10203574 SRR10203575 # To convert all the 7 SRA files here

into FASTQ files, it took 15 minutes only using the Cheaha default resources (1 CPU,

1G memory on Cheaha). Therefore, using the two-step procedure the total wall time

is 17 minutes vs 36 minutes using the one-step procedure (see below). The wall time

is cut by half at least. At this step you can simply convert all SRA files into FASTQ files

using a short code with the wild card, fasterq-dump SRR* since you have

downloaded the SRR files onto your HPC already (Figure 10). But in the one-step
download using the command fasterq-dump (below), you cannot use any wildcard

with the access codes. Also, you cannot use the wildcard for the command prefetch

at the previous step because SRA repository uses SRR for all entries.

2.6.3 Convert the downloaded SRA files using multiple threading

The SRA-Toolkit command fasterq-dump supports multiple threading. This means it

can use multiple CPUs to conduct the calculation of divided portions of the job
simultaneously. However, when we request compute node resources using the default

setting for resources, srun --pty /bin/bash we are given one CPU only. But the default

threading for the command fasterq-dump is 6 (i.e., --thread=6, or -e 6). Therefore, we

can speed up the conversion by requesting more CPUs from the clusters. Let us try,

srun –cpus-per-task=6 --pty /bin/bash

Then, we use the same code as follows,

fasterq-dump SRR10203569 SRR10203570 SRR10203571 SRR10203572

SRR10203573 SRR10203574 SRR10203575

With 6 CPUs (the default value for the -e option) and the same fasterq-dump code, now

it takes around 4 minutes only to convert all the 7 files (vs 15 minutes with one allocated

CPU).

 29

We can even shorten the time by requesting more CPUs than the default number of

threads for the fasterq-dump command (--thread=6) and increasing the threading at the
same time,

srun --cpus-per-task=12 --pty /bin/bash # This script requests 12 CPUs with

other resources as default.

fasterq-dump -e 12 SRR10203569 SRR10203570 SRR10203571 SRR10203572

SRR10203573 SRR10203574 SRR10203575 # This code uses 12 CPUs for the

conversion job. The code can be shortened as fasterq-dump -e SRR*

By requesting 12 CPUs (--cpus-per-task=12) and defining 12 threading (-e 12, or --
thread=12) in the above codes, now it takes 2 minutes only to convert the 7 samples.

At this point, you have 7 subdirectories, and 14 FASTQ files which are located outside

their original subdirectories inside the parent fastq_files directory. you can remove the

7 sub-directories since we will no longer need those files in the following analysis steps,

rm -r SRR10203569 SRR10203570 SRR10203571 SRR10203572 SRR10203573

SRR10203574 SRR10203575 # Please note that you need to use the -r option to

remove the directories and their contents, i.e. the SRA files. You can simply remove

all the 7 subdirectories using a wildcard, that is, rm -r SRR*. Please note that this

short code will also remove all the converted FASTQ files whose file names start with

SRR as well. A wildcard denotes any character in a bash string.

2.6.4 download and convert SRA files in one step (slower procedure)

In fact, you can download and convert the SRA files at one step using the SRA-Toolkit

fasterq-dump command, but many persons prefer the procedures of two steps described

above because experience indicates that it is slower and unstable. Before practicing one-

step downloading, let us first remove the FASTQ files that have been downloaded and
converted in two steps introduced above if we did not use the short code rm -r SRR* to

delete files/directories in the last step introduced,

rm *.fastq # Using a wildcard like this, we can delete all the files with the same

file extension of “.fastq”regardless the length of a file name. Use the ls command to

confirm that the FASTQ files are deleted. If you have used the code of rm -r SRR* to

delete the subdirectories you do not need this step because the FASTQ files shre the

same SRR element, which is covered by SRR*.

fasterq-dump SRR10203569 SRR10203570 SRR10203571 SRR10203572

SRR10203573 SRR10203574 SRR10203575 # This code downloads and

converts the SRA files into the FASTQ files at one step even though there are no

 30

pre-downloaded SRA files on your local HPC using the prefetch command. When

you do not download the SRA files using prefetch beforehand you cannot use the

wildcard * to download the SRR files. You need to specify all the entry codes in one-

step downloading using the fasterq-dump command. Now, use the ls command to

confirm that the files have been downloaded and converted.

For the one-step procedure, Cheaha took around the same amount of time to

download and convert the 7 SRA files when I requested 10 CPUs and 10 G of

memory versus 1 CPU and 1G of memory although the default threading for the

fasterq-dump command is 6. In both cases, Cheaha used around 36 minutes to
download these 7 RNA-seq from the repository with the command fasterq-dump

for one step downloading.

2.7 Upload FASTQ files onto HPC by other means

List the 7 subdirectories

Go to one of the subdirectories

List the .sra file inside the current subdirectory

Come back to the parent fastq_files directory
Check you are in the fastq_files directory by listing its conents

Request interactive resources

Load the SRA-Toolkit module

Convert the downloaded SRA files to FASTQ files

using the fasterq-dump command

On-screen progress reports of the 7 conversions

Go to the
fastq_files directory

On-screen progress reports

Output of the ls command

Figure 10. Convert the downloaded SRA files to FASTQ files using the command of

fasterq-dump on a compute node. Red underline, login node; yellow underline, compute

node. Yellow texts are description of scripts or command outputs added by the author.

 31

You can also transfer your raw FASTQ data onto HPC using the command wget, rsync,

Globus, FileZilla, rclone, or other means depending on where your source FASTQ files
are located. The sequencing facility and your HPC platform may prefer a specific type

of tool, for example, the Cheaha team recommends Globus. Seek help from the

sequencing facility or your HPC team if you need assistance at this step.

Globus and FileZilla are very intuitive and easy to use without the need of coding (or
commands). Audiences would take no time to master the technique of data transfer using

FileZilla or Globus since those both are graphic interfaces. As an example, Figure 11

depicts how to transfer data between local iMAC and HPC using FileZilla. To connect

to your HPC using FileZilla, you just need the host name (HPC as your host in this

tutorial), your HPC username, your HPC account password, and the SSH port number
(highlighted in yellow shading in Figure 11). The default port number is 22, but it may

be redefined. If 22 would not the port number, you can ask your HPC support team.

After providing values for these parameters, you just click the Quickconnect button (the

blue button in Figure 11) to connect to your HPC (remote site, highlighted in red ellipse

in Figure 11). The transfer is very simple. You just select the files/folders from the
source storage (the directories and files shaded in blue in Figure 11) and drag them to

the destination storage (Figure 11).

22

Select the folders/files in the source

storage and drag to the destination

Selected source files

on-screen progress reports

Figure 11. FileZilla as a tool for data transfer between local (your computer) and remote

HPC storage (both shaded in red ellipses). Shaded in yellow are parameters you need to

define (host name, username, port, and password). Red texts are the author’s description.

Shaded in blue are the folders and files to be transferred.

 32

Summary of Chapter 2

• The commands module spider and module avail can be used to find out installed

modules on HPC with a syntax of module spider [module name]. The module

name with these two commands is not case sensitive and can be incomplete.

• The command module load can be used to load a software to run with a syntax

of module load [module name]. The module name with this command is case

sensitive, and should be given in full except for the part of version number.

• There are different tools for transferring RNA-seq raw data to HPC depending

on where your raw data are located.

• SRA is the repository for the RNA-seq raw data, and SRA-Toolkit is the designed

software to download SRA data using the prefetch command and then convert

the downloaded data into FASTQ files using the fasterq-dump command.

• The SRA files can be downloaded and converted at one step using the fasterq-

dump command, but the two-step procedure is faster and more reliable. The data

transfer process can be optimized using the multiple threading option of the

fasterq-dump command. The default threading (-e or --threads) is 6 CPUs, and
12 CPUs usually take no time to be allocated from a good HPC cluster.

• FileZilla and Globus are two simple interfaces for data transfer between HPC and
other storages since those are graphic interfaces.

• Data transfer between HPC and other storages should be done on the compute

nodes, not the login nodes.

 33

Chapter 3

Request compute resources

and

QC RNA-seq data

 34

3.1 Conduct QC of RNA-seq data as an interactive job on a compute node

Once you have your RNA-seq FASTQ files in the fastq_files directory of your HPC

account, the first thing you do is to examine the quality of the raw RNA-seq data. This

can be done using FastQC. FastQC is widely used, and likely available on your HPC.

To QC your RNA-seq data in FASTQ format, we can request computational resources

on a compute node for interactive tasks using the command srun introduced in Chapter
2 already since QC is not a heavy job.

srun --pty /bin/bash # This requests the default resources from compute nodes

for interactive operation. We will request for more resources with resource options

when we run a heavy computing job. In that case, we would better use the sbatch

command of SLURM (see below). Please note in the interactive mode on compute

nodes requested by srun, you will lose the resources if you close the pseudo terminal

using the exit command. For a light job, the default resources may be more than

you need. You should exit the compute node when you will no longer use it so that

others can use it. You need to use the sbatch command to submit a non-interactive

job.

To check if FastQC has been installed on your HPC, use the module spider or module

avail command,

module spider fastqc # This command lists all the versions of FastQC installed on

your HPC. The module name here is not case sensitive, which avoids fusses since

one is usually not sure about the exact letter case of a module name. The command

module avail gives you similar information as module spider does. You can also find

the list of FastQC package versions using incomplete package names with these two

commands, for examples, module spider fastq, or module avail fast.

Now, you can load the FastQC module/software using the command module load,

module load FastQC # This loads the FastQC module/software onto the nodes

allocated to you. Please note that unlike the commands of module spider and

module avail the module name (i.e., FastQC here) is case sensitive when you use the

command module load. You can also explicitly load a FastQC version by specifying

the entire version information: e.g., module load FastQC/0.11.7-Java-1.8.0.74. You

can call module avail fastqc after loading it, and you will see which version has been

loaded. The loaded version is indicated by an “L”. When you do not include the

version code the default version is loaded. The default version is indicated by a “D”

when you output the list of versions of a module using “module avail”.

To find out the module version and retrieve the online help page, issue,

 35

fastqc --version # This command lists the version of the loaded FastQC using

the option of --version. Please note that “fastqc” here in this command is all in lower

case. Otherwise, you will have a message like: “bash: FastQC: command not found”

in the case you call “FastQC --version”.

fastqc --help # This displays brief information about the FastQC

command fastqc using the option of --help. Please note that “fastqc” here in this

command is all in lower case because the command fastqc is all in lower case (see

below).

A good practice is that you save the QC results in a specified directory, fastQC_results,

and this avoid cluttering the fastq_files directory by the many resulting QC files and
subdirectories. Make such a subdirectory under the directory of fastq_files using the

Make Directory command mkdir,

mkdir fastQC_results # You directly use this command when you are in the

fastq_files directory already. If not, use the command pwd to find out your location,

and then use the command cd to move to the fastq_files directory. Alternatively, you

can provide the relative or full path to the new directory you are making. For example,

you can make a subdirectory of test1 inside the newly generated fastQC_results

using a relative path, mkdir ./fastQC_results/test1, or a full path, mkdir

/data/user/kejinhu/RNA_seq_tutorial/fastq_files/fastQC_results/test1. The ./ (dot

slash) here denotes the current directory.

ls # Using the list command ls, you can see the newly generated directory of

fastQC_results within the directory of fastq_files.

You can QC a single file using the syntax below,

fastqc myRNAseq_file1.fastq --extract -o fastQC_results # e.g., you

can QC the file SRR10203569_1.fastq in this tutorial: fastqc SRR10203569_1.fastq --

extract -o fastQC_results. For description of the options for the command of fastqc,

see comments in the next script below.

You can use a single and short code below to QC all the FASTQ files inside the

fastq_files directory, and save the QC results into the subdirectory of fastQC_results,

fastqc *.fastq --extract -o fastQC_results/ # The --extract option has no

value and means the zipped output files will be uncompressed in the same directory

after they have been created. If you do not use the --extract option you will see the

zip and the HTML files only. In this case, you will uncompress the zip files using the

command of unzip. In the non-interactive mode, --extact is the default option. The

-o option specifies the directory in which the output files will be saved, and it is the

 36

one-letter version of the --outdir= option. The output directory for the -o option

need to be pre-defined and the fastqc command cannot generate the

fastQC_results directory itself. When the output directory is not pre-defined you will

see “Specified output directory, ‘fastQC_results' does not exist”in the .out file. When

you choose the long or word version of the --outdir= option, you use --outdir =

fastQC_results instead. You can and may not include / in the option -o

/fastQC_results. You can issue the fastqc --help command to see the usage of the

--extract and -o options.

When you run the above codes in the interactive mode on a compute node, you may

see the computing progress information on your terminal as shown in the Figure 12.

3.2. Submit QC work as a non-interactive job using the sbatch command

When you submit a job to the compute nodes using the srun command, you usually stay

on the computing screen until the computing is completed. It is not convenient when the

process takes a long time; or you conduct the same operation for many samples

(repetitive jobs). We can submit a long or repetitive job using the sbatch command and

immediately work on other light tasks on the login node, or you can even shut down
your desktop after submission of a non-interactive job. To do this, we make a SLURM

script file first and subsequently submit the file using the following simple syntax,

sbatch my-slurm-script-file-name.slurm # The job script file usually uses the

extension of .sh, standing for bash. In this tutorial, the author prefers the file

extension of .slurm since it is more informative.

Go to the fastq_files directory
List the contents of the current directory

Request resources

Make the directory of fastQC_results
Conduct QC for data of all the FASTQ files

On-screen reports of the calculations

Status of the resource allocation

Figure 12. Conduct QC of the RNA-seq raw data using the fastqc command of the

FastQC software. The job is conducted in interactive mode established using srun.

 37

Using the QC computing as an example, we can prepare a SLURM script in the Linux

nano text editor. Open nano editor with a file name of fastQC-RNAseq.slurm (Figures
13 and 14),

nano fastQC-RNAseq.slurm # This takes you to the nano text editor, and you can

prepare your script there. For the usage of nano text editor, you can use the Linux

manual function (man), man nano; or audiences can read the online tutorial about

it (https://www.nano-editor.org/ . You can find the online manual or the PDF version

via the Documentation tab on the nano home page).

In the nano text editor, prepare the following script or a similar one (Figure 13),

#!/bin/bash

#SBATCH --time=02:00:00

#SBATCH --partition=express

#SBATCH --nodes=1

#SBATCH --cpus-per-task=1

#SBATCH --ntasks=1

#SBATCH --mem-per-cpu=5G

module load FastQC

fastqc /data/user/kejinhu/RNA_seq_tutorial/fastq_files/*.fastq --extract \

-o /data/user/kejinhu/RNA_seq_tutorial/fastq_files/fastQC_results

There are two basic parts in the bash script above (also see Figure 13). First, we should

specify the resources needed for the non-interactive job. This is called the SLURM

directives section. The resource options include partition category, number of tasks,
number of nodes, number of CPUs, wall time, and minimum memory for each CPU (--

cpus-per-task) or for the job (--mem=). In the above code we request 1 CPU within one

node, 5 G of memory per CPU with the short partition for up to 2 hours of time for 1

task. The SLURM directives section may define other auxiliary features of the file, for
examples, options of --mail-type=, --mail-user=, --error=, --out=, --chdir=, --job-name=,

and others (refer to Sections 4.3 and 4.4, and Figures 23 and 25).

Second, you need to write codes for the specific computation (in the current case, codes

for QC of the RNA-seq data in FASTQ format using the software of FastQC). This
second part is called the job command section. Please note that you need to include a

code for loading the software/module before the application codes using the command

of module load (see codes above and in Figure 13). If you want a command line to

continue in a different line, you can use the backslash operator \ to break a long

command line into 2 lines as used in the above code for the fastqc command (in Figure
13) (see more notes about using a long command line in nano text editor in Section 4.3).

https://www.nano-editor.org/

 38

After the script is written, you can save it as instructed at the bottom of the nano text

editor, i.e., using the key combination of “control” and “O” (bottom of Figure 23). Then

you can exit the nano text editor using the key combination of “control” and “X” (bottom
of Figure 23).

In the directory the script file is located (i.e., fastq_files directory here), submit the job

using the sbatch command (Figure 14),

sbatch fastQC-RNAseq.slurm # Please note that this code submits the job

under the directory where the fastQC-RNAseq.slurm file is located. If you submit it

from any other directory, you should include the path to this script file. The SBATCH

script file could be in a directory different from the FASTQ data directory. When you

put and submit the SLURM script file in the directory where the FASTQ files are

located as we do here, you can shorten the paths for both the input and output files

in the bash script as, fastqc ./*.fastq --extract -o ./fastQC_results. The dot “.” denotes

“current directory”, which is the directory the script file fastQC-RNAseq.slurm is

submitted. However, if your script file is in another directory, you should not use this

short code and need to specify the full paths. Please note that the working directory

is where you submit the SBATCH script file not where it is located. Using the above

code, it took Cheaha around 29 minutes to complete the QC process for the 14

FASTQ files in this tutorial. There was not much improvement when the CPU was

increased to 14 (i.e., --cpus-per-task=14) because fastqc still uses one CPU when

the --thread option is not defined (see next section below for multiple threading).

The working directory of the SBATCH script file can be defined using the option of

--chdir (see Section 4.3 and Figure 23). When defined by the --chdir option, the

working directory is not affected by where you submit the script file.

Scripts for requesting resources

Use shebang (#!) to define that bash is the interpreter for excution of the script

Load the FastQC package

FastQC codes/scripts

Continuation
operator

Figure 13. Write scripts in the nano text editor for a SBATCH file. This example is a

SBATCH file for the fastqc command. The file name is displayed on the upper-right corner

of the nano text editor. Please note that the number of CPUs is not optimized in this code

and only one CPU was used for QC with this fastqc code (see text for detail). Refer to Figure

23 as well.

 39

3.3 Speed up QC using the multiple threading option -t of the fastqc command

The above code to QC the RNA-seq with the FASTQ files uses one CPU only even

though you request 12 CPUs. The fastqc command allows multiple threading with the

option of --thread or -t. In this tutorial, we have 14 FASTQ files, and therefore we give

the -t option a value of 14 and request 14 CPUs. With this new code, Cheaha spent 2

minutes and 53 seconds only to QC the 14 FASTQ files. Please note that you need to

request 14 CPUs when you choose --thread=14 for the fastqc command. Otherwise,

there is no improvement in speed. Please also note that unlike the multiple threading for

the STAR command, the multiple threading for the fastqc command is at the sample

levels that means the 14 FASTQC files are processed simultaneously. For the STAR

multiple threading, it is at the data level which means the data of each sample are divided

into multiple portions and are processed simultaneously (see Chapters 4 and 5).

#
 L

Is
t th

e
 c

o
n

te
n

ts
 o

f
 th

e
 fa

s
tq

_
file

s
 d

ir
e

c
to

r
y

#
 D

e
le

te
 th

e
 e

n
tir

e
 fa

s
tQ

C
_
r
e

s
u

lts
 d

ir
e

c
to

r
y
 a

lo
n

g
 w

ith
 its

 c
o

n
te

n
ts

#
 C

h
e

c
k

 if th
e

 d
ir

e
c

to
r
y
 o

f fa
s
tQ

C
-r

e
s
u

lts
 is

 d
e

le
te

d
.

#
 O

p
e

n
 th

e
 n

a
n

o
 te

x
t e

d
ito

r to
 p

r
e

p
a

re
 th

e
 s

b
a
tc

h
 file

 o
f
 fa

s
tQ

C
-R

N
A

-s
e

q
.s

lu
r
m

#
 S

e
e

 th
e

 n
e

w
ly

-p
r
e

p
a

re
d

 file
 o

f fa
s
tQ

C
-R

N
A

s
e

q
.s

lu
r
m

 in
s
id

e
 th

e
 fa

s
tq

_
file

s
 d

ir
e

c
to

r
y

#
 M

a
k
e

 th
e

 d
ir

e
c

to
r
y
 o

f fa
s
tQ

C
_
r
e

s
u

lts
 a

g
a

in
.

#
 S

e
e

 th
e

 n
e

w
ly

 g
e

n
e

r
a
te

d
 d

ir
e

c
to

r
y
 o

f fa
s
tQ

C
_
r
e
s
u

lts
.

#
 S

u
b

m
it th

e
 n

o
n

-in
te

r
a

c
tiv

e
 jo

b
 d

e
fin

e
d

 in
 th

e
 s

b
a

tc
h

 file
 o

f fa
s
tQ

C
-R

N
A

s
e

q
.s

lu
r
m

#
 C

h
e

c
k

 th
e

 jo
b

 s
ta

tu
s
 u

s
in

g
 th

e
 s

q
u

e
u

e
 c

o
m

m
a

n
d

.

#
 C

h
e

c
k

 th
e

 jo
b

 s
ta

tu
s
 u

s
in

g
 th

e
 s

q
u

e
u

e
 c

o
m

m
a

n
d

.

#
 J

o
b

 1
1

4
5

0
2

6
2

 is
 in

 th
e

 w
a

itin
g

 lin
e

 a
s
 in

d
ic

a
te

d
 b

y
 P

D
, i.e

., p
e

n
d

in
g

#
 J

o
b

 1
1

4
5

0
2

6
2

 h
a

s
 b

e
e

n
 r

u
n

in
g

 fo
r 1

5
:4

1
 a

s
 in

d
ic

a
te

d
 b

y
 R

, i.e
., r

u
n

n
in

g
o

n
 th

e
 c

o
m

p
u

te
 n

o
d

e
 o

f
 c

0
1

6
1

.

F
ig

u
re 1

4
 S

u
b
m

it a sb
atch

 jo
b
, an

d
 ch

eck
 th

e jo
b
 sta

tu
s u

sin
g

 th
e

sq
u
eu

e co
m

m
an

d
 w

ith
 th

e -u
 o

p
tio

n
. T

h
e y

ello
w

 tex
ts are th

e

au
th

o
r’s illu

stratio
n
.

 40

3.4 Submit your computation work (QC job as an example) via the web Job

Composer

Your HPC may have a job composer on its web portal, which provides a graphical

interface to your HPC. You may make a SLURM job request for your computation
project just by clicking the buttons and tabs (Figures 15-17). You can also write your

batch script using the associated more user-friendly web text editor (Figure 17). Here,

we use FastQC as an example to introduce how to submit non-interactive jobs via the

web job composer powered by the OSC Open OnDemand.

On your HPC web dashboard, extend the pulldown menu of the Jobs tab (Figure 2) and

click on the Job Composer button on the menu to open the Job Composer interface

(Figures 15 and 16). On Job Composer page, find the text editor pane and click the Open

Editor (cyan button in Figure 16) to get access to the job text editor (Figure 17).

Compose the script and click the Save button (Figure 17). When you are back to the job
composer main page, click the Submit button, and you will see that your job statuses

change from Not Submitted, to Queued, to Running, and finally to Completed when the

process will be finished (Figure 15).

During the computation you can go to the HPC terminal and check the status using,

squeue -u [your HPC username] (lower part in Figure 14). After the computation you

can see the resulting files using the ls command under the destination directory.

Apparently, you can click some buttons at some steps of the job submission processes

instead of using command lines, but you may find that using the command lines is more

convenient when you become familiar with just some basic commands of SLURM.

In the web Job Composer, the sbatch script is similar to that in srun and that of the

traditional sbatch script introduced above. In the FastQC code part, the only difference

of the SLURM code from that of the login mode or interactive compute mode is that
you need to define the full path to the FASTQ files to be analyzed. You should define

the path to the output file directory as well. This is because the script file is located in

and submitted from the myjobs directory of the home directory by default, which is the

working directory. However, you can define the working directory using the --chdir

option in the SBATCH directives section.

3.5 Review the FastQC results

For each FASTQ file, you will have one subdirectory generated automatically, one

compressed file, and one HTML file. Go to the subdirectory for one of the FastQC result

files using the cd command. You will see that the associated subdirectory contains 4

files and 2 subsubdirectories. The 4 files are: fastqc_data.txt, fastqc.fo,
fastqc_report.html, and summary.txt. The two subdirectories are Icons and Images. Both

directories contain many png files.

 41

 3.5.1 Review the FastQC results using the nano text editor, or the

generic Linux commands

To do this, go to the FastQC result directory of an RNA-seq using cd, and use the nano

command,

nano summary.txt # You can examine the results using the cat utility, i.e., cat

summary.txt, but the nano text editor displays the output in a way that is easy to

read. Please note that you need to open the summary.txt file with the nano text

editor in the directory where the file summary.txt is located. Otherwise, you will open

the nano text editor with an empty workspace. If you do want to open a file using

the nano command from a different directory, you should include the path to the

file, i.e., nano path_to_the_file/fine_name. For the usage of nano text editor, you can

use the Linux manual command, man nano, or read online tutorial about it

(https://www.nano-editor.org/ , you can find the online manual or the PDF version

via the Documentation tab of the nano home page).

You may see results like,

PASS Basic Statistics SRR10203569_1.fastq

PASS Per base sequence quality SRR10203569_1.fastq

PASS Per tile sequence quality SRR10203569_1.fastq

PASS Per sequence quality scores SRR10203569_1.fastq

FAIL Per base sequence content SRR10203569_1.fastq

PASS Per sequence GC content SRR10203569_1.fastq

PASS Per base N content SRR10203569_1.fastq

PASS Sequence Length Distribution SRR10203569_1.fastq

FAIL Sequence Duplication Levels SRR10203569_1.fastq

PASS Overrepresented sequences SRR10203569_1.fastq

PASS Adapter Content SRR10203569_1.fastq

https://www.nano-editor.org/

 42

Figure 15. Open OnDemand-based Web interface for SLURM job submission. The

screenshot did not capture all the features. As you can see some processes can be done by

clicking a button, for example, submitting a job by clicking Submit instead of using the

sbatch command. But the web interface is not necessarily convenient for an experienced

user of Linux and SLURM.

Figure 16. The web composer interface showing the section for opening the web text

editor by clicking the Open Editor button (cyan button on the lower left) rather than using

the nano file-name command. The script contents for the selected job (the job shaded in

blue in Figure 15) can be seen here.

 43

You can also review the fastqc_data.txt file in the nano text editor using the nano

command,

nano fastqc_data.txt # The content of this file is long, and you can page down and

up to review it.

Alternatively, you can check the fastqc_data.txt file using the less command,

 less fastqc_data.txt # You can use the up- or down-arrow keys, or page up

and page down keys to navigate along the text. To exit the text file in the less mode, hit the q key.

The cat command can also output the file contents on the screen (try cat fastqc_data.txt), but the

less command is better since this file is very long.

 3.5.2 Review the FastQC results on HPC virtual desktop

The most efficient way to review the QC results is using the HTML files, which will

give you the graphical summaries of the QC analyses. To do this, we quickly launch the
HPC virtual desktop from Cheaha OnDemand web portal (via the “Interactive Apps”

tab in Figure 2). On the HPC desktop, open the terminal emulator. Then, go to the

directory that contains the HTML file using the cd command, and run,

module spider firefox

module load firefox

Figure 17. OnDemand web text editor. Captured is part of the text editor with the fastqc

codes and the Save button.

 44

firefox sampleName.fastqc.html # You will see the FastQC results on the

Firefox browser after running this code.

In the simplest way, you just go to the directory of the fastQC_results via the Windows-

style File Manager on the HPC desktop interface, and then click on the HTML file name

or icon.

 3.5.3 Review the FastQC results on your desktop browser

Alternatively, there is still a simple and familar way to see the QC results using the

generated HTML files if your HPC does not have a HPC desktop interface. You can just

transfer the HTML files onto your desktop hard drive using FileZilla or Globus. Then,

you can open it simply by clicking on one file name of the QC HTML files.

3.6 Aggregate the FastQC results of your projects using the MultiQC facility

Using FastQC, you get results for each RNA-seq FASTQ file. It is tedious to examine

all the samples one by one when your projects involve a lot of samples. MultiQC is a

tool that generates one HTML file aggregating all the QC results based on FastQC. The

syntax is very simple.

srun --pty bash # This will request compute resources using the default

options.

module spider multiqc # Or, you can just use module spider multi, or

module avail multi.

module load MultiQC

cd fastQC_results # Please note that you should use multiqc command to

aggregate the QC results within the fastQC_results directory where the compressed

FastQC result files are located. If not in this directory, you can use cd to navigate into

this directory.

multiqc *_fastqc.zip # This code will aggregate all 14 FastQC result files into one.

We simply use the wild card * here to include all QC result files in the current

directory without the need to list all the individual files for the multiqc command

(Figure 18).

ls # This lists the files in the working directory, and you will see a new file

in this directory named multiqc_report.html, and a subdirectory named multiqc_data

(Figure 18).

 45

You can also use the multiqc command in the immediate parent directory of the

fastQC_results directory containing the fastqc.zip files. In this case the resulting
multiqc_data directory and the multiqc_report.html file will be located in the parental

directory,

multiqc fastQC_results # In this code, fastQC_results is the directory

containing all the FastQC result zip files.

Now, you can examine the aggregated QC results with the file of multiqc_report.html

using the methods introduced above for the individual samples.

#
 S

u
b
m

it th
e
 Q

C
 jo

b
 o

n
 c

o
m

p
u
te

 n
o
d

e
 u

n
d
e

r th
e
 fa

s
tQ

C
_
r
e

s
u

lts
 d

ir
e

c
to

r
y

#
 O

n
s
c
r
e

e
n

 p
r
o
g

re
s
s
 r

e
p
o
r
ts

#
 C

h
e
c
k

 th
e
 r

e
s
u

lltin
g

 file
/d

ir
e

c
to

r
y

#
 R

e
s
u

ltin
g

file
/d

ir
e

c
to

r
y

F
ig

u
re 1

8
. A

g
g
reg

a
te th

e Q
C

 resu
lts u

sin
g
 th

e m
u

ltiq
c co

m
m

an
d

 o
n
 a co

m
p
u

te n
o
d

e. T
h
e

co
m

p
u
te n

o
d

e is u
n
d
erlin

ed
 in

 y
ello

w
; th

e w
o
rk

in
g
 d

irecto
ry

 is u
n
d
erlin

ed
 in

 red
; th

e

resu
ltin

g
 Q

C
 file an

d
 d

irecto
ry

 are sh
ad

ed
 (lo

w
er rig

h
t).

 46

Summary of Chapter 3

• For any job that takes more than 1 second to complete, you should do it on

compute nodes not the login nodes.

• Interactive compute node resources can be requested using the srun command.

• A non-interactive job can be submitted to compute nodes using the sbatch

command.

• A computation job can also be submitted using the web composer.

• FastQC can be used to summarize the quality of the RNA-seq raw data, but the

results are outputted as individual files for each FASTQ file.

• FastQC allows multiple threading, and such parallel calculation can significantly

reduce the operation time.

• MultiQC can aggregate the FastQC results and summarize the entire RNA-seq

project in one individual graph or file.

• The text file of the QC results can be reviewed using the Linux commands, cat,
or less or the Linux text editor nano. The HTML file of the QC results can be

reviewed using a web browser.

 47

Chapter 4

Generate reference genome indices

 48

With the high-quality FASTQ data on HPC, the first critical and foundational step in the

RNA-seq analysis pipeline is aligning the RNA-seq reads or fragments onto the
reference genome. There are different aligners for RNA-seq data. This protocol will

provide major procedures for RNA-seq alignment to the human reference genome using

the ultra-fast Spliced Transcripts Alignment to a Reference (STAR) aligner, which

outperforms other RNA-seq aligners 3, 4. This tutorial functions as a primer and presents

the basic alignment skills. For extensive description of STAR alignment, audiences are
referred to the protocols authored by the software developers 4.

Before alignment, we need to establish the human genome indices, which is prepared

once only and can be used for all alignments before a new release will be available or

when your sequencing lengths are different. For preparation of reference genome indices
of other species, the procedures below can be followed similarly.

To generate human genome indices, we need the FASTA and annotation GTF files and

the following two sections will walk you through the process for transferring human

genome FASTA and GTF files onto HPC from ENSEMBL.

4.1 Download and unzip the annotation GTF file of human genome from

ENSEMBL

We will put the GTF and FASTA files in a specified directory, humanGenomeIndex

under the directory of /data/user/kejinhu/RNA_seq_tutorial. We make this directory first,

 cd /data/user/kejinhu/RNA_seq_tutorial

mkdir humanGenomeIndex # or, you simply do it at one step by providing the

path, mkdir /data/user/kejinhu/RNA_seq_tutorial/humanGenomeIndex.

cd humanGenomeIndex

Now, download the GTF file into the humanGenomeIndex directory using the wget

command. Go to the ENSEML website (https://useast.ensembl.org/index.html), click on

the HTML text “Human” or the passport photo of the Michelangelo’s David. On the

human ENSEMBL home page, click on the HTML text “download GTF” on the “Gene

annotation” panel (Figure 19). On the index page (Figure 20), right click on the HTML
text: Homo_sapiens.GRCh38.105.gtf.gz (the version number may not be 105 when you

are using this tutorial), and on the popup menu click on “Copy Link Address” (Figure

20).

Now, go back to your HPC terminal and request compute resources. Under the
humanGenomeIndex directory type wget and paste the link after the wget command,

and then hit the Enter key.

https://useast.ensembl.org/index.html
http://ftp.ensembl.org/pub/release-104/gtf/homo_sapiens/Homo_sapiens.GRCh38.104.gtf.gz

 49

srun --pty /bin/bash # This requests default compute resources from your cluster.

In fact, the downloading takes less than 1 minute only.

wget http://ftp.ensembl.org/pub/release-105/gtf/homo_sapiens/Homo_sapiens.

GRCh38.105.gtf.gz # Please note that your version number may not be 105 at

the time you will use this tutorial. The download is very fast, and just took 6.7 seconds.

Of course, you can just download the zipped file to your desktop by clicking the

HTML text in Figure 20, and then transfer the file onto HPC using FileZilla or Globus

introduced above. But, direct downloading onto HPC using wget is easier and more

convenient.

We use the .gtf file not the chr.gtf file here (see Figure 20). The chr.gtf file contains

annotation for the assembled chromosomes only, and do not include the unplaced or
unlocalized contigs. This agrees with the FASTA file we will download later, which

Where to download
the FASTA file

Where to download
the annotation file

Where to download
the FASTA file

Figure 19. ENSEMBL hyperlinks for downloading GTF and FASTA files. The

respective hyperlinks are shaded and annotated by the author.

Figure 20. Snapshot for downloading human genome GTF file from ENSEMBL.

Captured also is the popup window menu for the HTML text of

“Homo_sapiens.GRCh38.105.gft.gz”. Shaded in red is where the address can be

copied onto clipboard by a click.

http://ftp.ensembl.org/pub/release-105/gtf/homo_sapiens/Homo_sapiens.%20GRCh38.105.gtf.gz
http://ftp.ensembl.org/pub/release-105/gtf/homo_sapiens/Homo_sapiens.%20GRCh38.105.gtf.gz

 50

include the unlocalized contigs as well. Including the unlocalized contigs will reduce

the counts for the ‘unmapped reads” and also avoids wrong alignment (see below).

Now, use the ls command to see if the compressed file is there. You should see a file of
“Homo_sapiens.GRCh38.105.gtf.gz” in the directory of humanGenomeIndex if the

downloading is successful. This file is only 49 MB (Figure 21). Now, uncompress the

compressed file using the command of gunzip,

gunzip Homo_sapiens.GRCh38.105.gtf.gz

After uncompressing, use the ls command and you can see the file of

“Homo_sapiens.GRCh38.102.gtf” (Figure 21). Please note that “.gz” is missing because
the file is uncompressed now. This file has a size of 1.3 gigabytes if you check with ls -

hl (Figure 21).

After unzip the GTF file, you can see the content of this GTF file with the less command,

less Homo_sapiens.GRCh38.105.gtf

But the content is kind of messy when you check with the less command. You can see

the more organized contents of the GTF file when you open it in the nano text editor,

nano Homo_sapiens.GRCh38.105.gtf # You likely find that your job is killed

when you try to open the GTF file using nano. This is because this file is 1.3 G and

your requested memory is only 1 G using the default options of srun. To solve this

problem, you can request more resources. First, you cancel the current interactive

job using scancel [job ID]. Then request more resources, for example, srun --

mem=3G --pty /bin/bash. Now, you are able to open the GTF file using nano. Be

Request interactive compute resources with the default resource options.

Make the subdirectory of humanGenomeIndex.

Go to the directory of humanGenomeIndex.

Download the human
GTF file from ENSEMBL.

Go to the tutorial directory.
List files/directories in the current directory.

List the contents of the current directory and make sure the subdirectory is generated.

List the downloaded file and its size.

Uncompress the .gz file using the command of gunzip.
List the uncompressed file and its size using ls with the options of -l and -h (combined as -hl).

Time spent
for downloading

On-screen progress reports for the srun command.

List the downloaded file.

The file size becomes much greater after uncompression, and the .gz
file is gone.

Figure 21. Download the human GTF file to HPC and unzip it. Underlined in red is the

login node; in yellow is the compute node. Texts after # are illustration of the scripts,

their status, or outputs files.

 51

patient when you will see a black screen. It may take a while to open this file with

nano because of its huge size.

4.2 Download and unzip the human genome FASTA file

You also need the human genome FASTA files to prepare the human genome indices

for subsequent alignment. We use the wget command to download it as well. First, we
request compute resources using the srun command,

srun --nodes=1 --cpus-per-task=10 --mem-per-cpu=5G --ntasks=1 --pty

/bin/bash # To demonstrate how to use the options of the srun command,

here we request unnecessarily more resources than downloading the GTF file above

originally considering that FASTA file of human genome is much greater than its GTF

file. With the requested resources here on Cheaha, it took around 23 minutes 8

seconds (on the Cheaha node c0173) to download the human genome FASTA file

using the code below. However, when the default resource (1 CPU, 1 G of memory

using the script of srun --pty bash) was requested it spent even less time to

download the same FASTA file of human genome (11 minutes 26 seconds with node

c0170; or 11 minutes 36 seconds on node c0173, upward arrow in Figure 22).

Then we use the wget command to download the FASTA file of human genome. On
any web browser, go to the ENSEMBL genome browser

(https://useast.ensembl.org/index.html). On the ENSEMBL site: choose the human

genome, and under the Genome Assembly pane, click the HTML text “download DNA

sequence (FASTA)” (highlighted and annotated in the left pane of Figure 19), or you can

click on the download thumbnail next to its HTML text; (Alternatively, in the Gene
Annotation pane, click “download FASTA”, and in the new windows, click the HTML

text dna/, and this will take you to the same page). You will see a long list of FASTA

files of the human genome, including files for each chromosome and the entire genome.

You also have files with the repeat sequences masked by replacing the repeat sequences
with Ns (rm files, RepeatMasked) or by marking the repeat sequences by lowercase

letters (soft masked, sm). There are also files of “primary assembly” and “toplevel”.

Right-click on the HTML text for the soft-masked primary assembly and choose the

clickable “Copy Link” text on the popup menu. Go back to the HPC terminal, and paste

the link after the wget command,

wget http://ftp.ensembl.org/pub/release-105/fasta/homo_sapiens/dna/

Homo_sapiens.GRCh38.dna_sm.primary_assembly.fa.gz

It is recommended that the human genome FASTA files are downloaded from the

ENSEMBL database rather than NCBI or GENCODE. Linux is case sensitive, and you

need to pay attention to the capital letters in the path. “sm” in the file name means soft
masked, i.e., the repetitive sequences such as Alu and LINE are in lower case. It is

http://ftp.ensembl.org/pub/release-105/fasta/homo_sapiens/dna/

 52

recommended that “rm”, which means “repeat masked”, files should not be used

because it masks the repetitive sequences by replacing them with Ns. It is also
recommended that “primary_assembly” files are used instead of the “toplevel” files.

Soft masked version should be used for STAR since STAR allows alignment to the

marked regions while STAR can still detect which regions are masked.

After downloading, you will see the compressed .gz file in the humanGenomeIndex

directory using the ls command with the -hl options. You will see a file of

Homo_sapiens.GRCh38.dna_sm.primary_assembly.fa.gz, which is only around 899
MB for the 105 version (Figure 22). To unzip the gz file, run the following code,

gunzip Homo_sapiens.GRCh38.dna_sm.primary_assembly.fa.gz # Human

genome is huge, but the unzip process took several seconds only on Cheaha. To

see the unzipped files, use the ls command (you can use the long option of -l with

ls to see the sizes of the files. The combined -lh option will give the file sizes in the

format more understandable, i.e., human readable.) (Figure 22). You should see a

file of Homo_sapiens.GRCh38.dna_sm.primary_assembly.fa. This file is 3 G in size.

Please note that after unzipping, the zipped file is removed automatically.

After you unzip the FASTA files, you can open it in the nano facility and review the
FASTA file. Or, you can check it using the less command,

nano Homo_sapiens.GRCh38.dna.primary_assembly.fa

Or,

less Homo_sapiens.GRCh38.dna.primary_assembly.fa

Figure 22. Download the human genome FASTA file using the wget command, and

uncompress it using the gunzip command. The compute node is underlined in yellow. In

this example, both downloading (GTF and FASTA files) were completed on the same

resource using the default options of srun since both tasks are light. Yellow texts after #

are illustration of the Linux processes in screenshot.

Download

the human
FASTA file

from
ENSEMBL.

On-screen progress reports
for downloading using wget.

Time spent
for downloading# List the downloaded file and its size using ls with the options of -hl.

Uncompress the .gz file using the command of gunzip.
List the files and their size using ls with the options of -l and -h (combined as -hl).

Outputs of “ls -hl”.

The resulting FASTA file (zipped).

 53

4.3 Generate human genome indices with the default threading parameter

We will submit the indexing script using the sbatch command. First, we make a SLURM

file of STAR_Index.slurm using the nano text editor.

nano STAR_Index.slurm # This command opens the nano text editor with the

file name of STAR_Index.slurm even though you do not have such a file name

beforehand.

In the nano text editor, prepare the following bash script to be submitted by the sbatch

SLURM command,

#!/bin/bash

STAR human genome indexing

#SBATCH --job-name=genomeIndexing

#SBATCH --partition=short

#SBATCH --nodes=1

#SBATCH --ntasks=1

#SBATCH --cpus-per-task=1

#SBATCH --time=12:00:00

#SBATCH --mem=34G

#SBATCH --mail-type=FAIL

#SBATCH --mail-user=hukejin@gmail.com

#SBATCH --error=Index.err

#SBATCH --out=index.out

#SBATCH --chdir=/data/user/kejinhu/RNA_seq_tutorial/\

humanGenomeIndex/stdout_stderr/

module load STAR

STAR --runMode genomeGenerate \

--genomeDir /data/user/kejinhu/RNA_seq_tutorial/humanGenomeIndex/ \

--genomeFastaFiles /data/user/kejinhu/RNA_seq_tutorial/humanGenomeIndex/\

Homo_sapiens.GRCh38.dna_sm.primary_assembly.fa \

--sjdbGTFfile /data/user/kejinhu/RNA_seq_tutorial/humanGenomeIndex/\

Homo_sapiens.GRCh38.105.gtf \

--sjdbOverhang 50

Then, submit the job using the sbatch command,

sbatch STAR_Index.slurm

 54

By default, STAR uses one CPU for indexing if not specified and therefore we specify

--cpus-per-task = 1. The above code uses one CPU and 34 G of memory to index the
human genome and spend 3 hours and 13 minutes to complete. Increasing the memory

to 60 G did not improve the indexing speed and spent around 3 hours and 21 minutes to

complete.

4.4 Generate human genome indices with multiple threading

STAR implements multiple threading, i.e., it uses multiple CPUs to conduct the same
job. It can divide a job into multiple portions and each CPU will conduct a portion of

the job. To this end, STAR has a --runThreadN option. The default value of the --

runThreadN is 1. Indexing of human genome is very slow, but we can increase the

number of CPUs to speed up the indexing. Prepare a file of STAR_indexN.slurm in

nano text editor,

#!/bin/bash

STAR human genome indexing

#SBATCH --job-name=genomeIndexing

#SBATCH --partition=short

#SBATCH --nodes=1

#SBATCH --ntasks=1

#SBATCH --cpus-per-task=12

#SBATCH --time=02:00:00

#SBATCH --mem-per-cpu=5G

#SBATCH --mail-type=FAIL

#SBATCH --mail-user=hukejin@gmail.com

#SBATCH --error=Index.err

#SBATCH --out=index.out

#SBATCH –chdir=/data/user/kejinhu/RNA_seq_tutorial/humanGenomeIndex/stdout_stderr/

module load STAR

STAR --runThreadN 12 \

--runMode genomeGenerate \

--genomeDir /data/user/kejinhu/RNA_seq_tutorial/humanGenomeIndex/ \

--genomeFastaFiles /data/user/kejinhu/RNA_seq_tutorial/humanGenomeIndex/\

Homo_sapiens.GRCh38.dna_sm.primary_assembly.fa \

--sjdbGTFfile /data/user/kejinhu/RNA_seq_tutorial/humanGenomeIndex/Homo_\

sapiens.GRCh38.105.gtf \
--sjdbOverhang 50

The first line in the above code is called shebang line, which specifies that bash will be

the shell interpreter. We specify this by providing the path to the bash software. Shebang

consists of # and ! with no space between them. Usually we use #!/bin/bash without

 55

space between shebang and the interpreter, but spaces are allowed between #! and

/bin/bash, and therefore #! /bin/bash will work. The second line is a comment describing
the nature of the bash script after the SBATCH script. In Linux the pound sign #

indicates a comment which is ignored by the bash interpreter. Each #SBATCH defines

a sbatch command option. Please note that there is no space between # and SBATCH.

If there is a space, it will be treated as a comment as in the case of line 2 in the above

sbatch script. If the --out= option is not defined, the standard output file will be saved
as a file name of slurm-[job_ID].out.

After saving the STAR_Index.slurm, exit the nano text editor and submit the job from

any directory as follows,

sbatch /data/user/kejinhu/RNA_seq_tutorial/STAR_Index.slurm # This will

submit the sbatch job with the script file of STAR_Index.slurm. The status of the

submitted job can be checked using the command of squeue -u [your_user_name].

A PD status indicates that your job is pending, and an R status indicates your job is

running. You can submit from any directory if you use the full path. You do not need

to include the path if you submit it in the directory where the file STAR_Index.slurm

is located. The STAR_Index.slurm file can be in any directory. The Log.out,

slurm_jobID.out, and the Index.err files, and the _STARtmp directory will be saved in

the same directory defined by the “change directory” --chdir= option of the

SBATCH script. The resulting index files will be saved in the directory defined by the

--genomeDir option of the STAR commend.

Figure 23. Writing a sbatch script file for indexing human genome in the nano text editor.

The nano text editor is a simple Linux text editor, and it even provides on-screen reference

for shortcuts of some common functionalities at the bottom of your nano (shaded in green).

In the shortcuts, ^ means the “Control” key. HPC login was achieved via SSH in this case

(upper right, shaded in yellow). The SBATCH working directory is modified using the --

chdir option. The red texts after the red # are illustration by the author.

The shebang line to specify that bash is the shell interpreter
A comment to describe the nature of the bash script file.

Job parameters defined by

 each SBATCH option

Load the STAR module
STAR

code

(Linux

script)

 56

If you have no nano on your HPC, you may use the vi or vim text editor which is

universal but needs more specialized skills to use. One practical difference between the
nano text editor and the Word text editor is that nano has no automatic line wrapping.

For convenience, the long STAR command line is broken into several lines in the above

description. But the content of the long STAR command above (with many options, and

long values for several options) should be in one line in the nano text editor when you

do not introduce any operator within the command. Do not use Enter key to break the
STAR command line into several lines when the STAR a command line become too

long because this will change the meaning of the code. There is a Justify function in

nano i.e., CTRL + J, but do not try to use it. Your code will not run if you break one

command into 2 or several lines using CTRL+J. If you want the command line to

continue in a different line, you can use the backslash operator \ to break the long
command line into 2 or more lines as used in the above code. Please note that the

backslash should be the very last character of your script line and a hidden mistake could

be a space after the backslash. If there is a space after \, your job will abort. You will

receive a failure email notice in this case. You can review the standard error (with the .err

file extension) file and troubleshoot it. Used in this way, the backslash operator means
continued in the next line (line continuation operator). Please note that a continuation

operator \ is used for both file paths of the GTF and FASTA files to break each long

command line (long file names and long directory names) into two lines. Unlike

continuation operator used between two options in this code, there is no space before
the continuation operator \ in these two file paths because the separated parts of each

path should constitute one string.

The sbatch command is used to submit batch script to be run on your HPC. On the HPC

terminal, issue sbatch --help to learn more about each option of the command sbatch
such as --time, --error, --partition, and others. You can also use the manual command,

man sbatch to get more detailed information about usage of the sbatch command. For

the option of --mail-user, it is not necessary to use your work/institution email and your

personal email will work. For the --partition option, please contact your HPC team

(system administrator) to find out the available values defined for your HPC by your
institution. You can find out the partition information by yourself using scontrol show

partition as discussed previously. These are different from Cheaha depending on the

capacity of your HPC. The --error option is useful in the case your codes have any bug.

This option will generate a file containing the information about the failure. If the path

for the --error option is not specified, the .err file will be saved where you submit the
SBATCH file, but you can save it in any directory you define, e.g., --

error=/path/to/the/desired/directory/index.err.

The working directory is the one the sbatch script file is submitted. Therefore, the

standard output, standard error and the Log.out files as well as the _STARtmp directory
are saved in the directory where you submit the SLURM file (working directory), not

where the SLURM file is located. However, like the Log.out file, the standard output

 57

and standard error files can also be directed to any directory if the path is given. When

the file name of the --error and --out are not defined, they will be generated automatically
as slurm_%j.err and slurm_%j.out, where %j is the slurm job number. The working

directory can be defined using the --chdir option. When the working directory is defined

by the --chdir option, you can still save the stdout and stderr files in any directory you

define individually in the --out and --error options. The directory of the Log.out file can

be defined using the STAR option of --outFileNamePrefix (see below).

For usage of various options of the STAR command, visit

https://github.com/alexdobin/STAR/blob/master/doc/STARmanual.pdf. You can also

find online help,

module load STAR

STAR --help # Please note that you need to load the software (STAR here) before

you could bring about its onscreen help information or build-in manual.

In the above code of genome indexing, we define the basic options of STAR command.

For advanced options, refer to the STAR manual.

--runThreadN, defines the number of cores for indexing the genome. Here, we request

12 CPU cores.

--runMode, for indexing, the value for this option is genomeGenerate.

--genomeDir, define the path to the directory where genome indices will be saved upon
generation.

--sjdbGTFfile, defines the path to the GTF file and the GTF file name. Please note that

GTF file can be in a different directory from that defined by the --genomeDir option.

--genomeFastaFiles, defines the path to the FASTQ files, and the names of the FASTA

files. Please note that FASTA files can be in a different directory from that defined by

the --genomeDir option.

--sjdbOverhang, the value for this option is the ReadLength minus one. In this tutorial,
all read length is 51 bases. Therefore, we use 51-1 = 50. RNA-seq read length is 100 for

many experiments, and you should use 99 in that case. The STAR manual states that

“the default value of 100 will work as well as the ideal value”. Please note that the read

length for --sjdbOverhang is the mate read length as reported in the FastQC results, not

the average input read length as reported in the mapping/alignment output file

Log.final.out, in which the average read length is 2 (mate read length) (see below).

You can also easily find out the sequencing read length using IGV. In the alignment

https://github.com/alexdobin/STAR/blob/master/doc/STARmanual.pdf

 58

track of IGV, the read length is included in the popup text when you hover or click your

mouse over the alignment track.

Using the above requested resources, Cheaha used 31 minutes to complete the indexing
of human genome. Increasing the threading from 12 to 24 with the same memory (--

mem=60G) shortens the operation time only to 20 minutes and 33 seconds. Indexing

human genome requires large memory, but further increase of memory from 60 G to

120 G with the same number of CPUs (12 CPUs) showed no benefit and spent the same

time to index human genome.

At this point, if you go to the directory of humanGenomeIndex you may see the file of
Log.out (if the prefix is not defined using the --outFileNamePrefix option. When you

defined the prepfix, the file name may be chosenName_Log.out). Your Log.out file may

be in the directory where the script file is submitted if its destination is not defined. The

Log.out file for STAR indexing can be placed in any directory if its path is defined using

the --outFileNamePrefix option. This file is useful since it records the version of STAR
and the codes (parameters) used for indexing (at the beginning of the file). You can use

nano (command is nano Log.out) to open the Log.out file and check the basic

information. You can also see the content of the Log.out file using: cat Log.out. Please

note that in addition to the sequence of the 24 chromosomes, you can see many
unlocalized genomic contigs. In the GRCh38.105 assembly, there are 169 contigs in

addition to the chromosomes and mitochondria DNA. The full list of chromosomes and

contigs is stored in the file of chrName.txt. Make sure you have those unlocalized

genomic contig included. Otherwise, many reads will be reported as unmapped, and

even worse mapped to the wrong places of the genome. You will have those unlocalized
genomic contigs if you use the primary assembly of the FASTA files. You can see the

lengths in bp for all chromosomes and contigs by opening the file of chrLength.txt.

In the directory of humanGenomeIndex, you can list all the files with ls -lh, and you will

see the SA file is 23 G, and the Genome file is 3 G. Other files are much smaller.

In the genomeParameters.txt file, you can see the parameters you have used to generate

the human genome index.

Please note that you do not need the files of Index.out, Index.err, and Log.out for the
alignment using STAR. These files are saved in the directory where the SBATCH script

file is submitted when their paths are not defined. The file of Log.out can be placed in

any directory using the option of --outFileNamePrefix /path/to/the/desired/directory.

The SLURM standard output and standard error file can be saved in any directory if

specified in the #SBATCH --output= and #SBATCH --error= options. The

genomeParameters.txt is needed for STAR alignment. This tutorial uses human genome

as an example, and the audiences can generate genome indices for other species using

the procedures here.

 59

#
 G

o
 to

 th
e

 in
d

e
x

 d
ire

c
to

r
y

#
 L

is
t th

e
 c

o
n

te
n

ts
 o

f th
e
 in

d
e
x
 d

ire
c
to

r
y

$
 M

a
k
e

 d
ire

c
to

r
y
 fo

r th
e

 s
ta

n
d
a

r
d
 o

u
tp

u
t (s

td
o
u

t) &
 s

ta
n
d

a
r
d
 e

r
ro

r (s
td

e
r
r) file

s

#
 L

o
c

a
tio

n
 o

f th
e
 S

L
U

R
M

 s
b

a
tc

h
 file

.

#
 S

u
b
m

it th
e
 s

b
a
tc

h
 jo

b
 fro

m
 a

n
y
 d

ire
c

to
r
y
 (h

o
m

e
 h

e
re

).

#
 C

h
e
c
k

 th
e
 s

ta
tu

s
 o

f y
o
u
r s

u
b

m
itte

d
 jo

b

#
 T

h
e

 jo
b

 h
a
s
 b

e
e
n

 r
u
n
in

g
 fo

r 2
′ 3

1
″
 o

n
 n

o
d
e
 c

0
1
7

5
.

#
 T

h
e
 re

s
u
ltin

g
 s

td
o

u
t, s

td
e

r
r a

n
d
 L

o
g
.o

u
t file

s
 in

 a
 s

e
p
a

ra
te

d
 d

ire
c

to
r
y

#
 L

is
t th

e
 n

e
w

ly
 g

e
n
e
ra

te
d
 in

d
e
x

 file
s
 in

 th
e
 in

d
e
x

 d
ire

c
to

r
y
.

#
 L

is
t th

e
 in

d
e
x

 file
s
 in

 p
ro

g
re

s
s
.

F
ig

u
re

2
4

.
S

n
ap

sh
o
t

o
f

th
e

in
d
ex

in
g

p
ro

cess.
S

h
a
d
ed

in

g
reen

are

th
e

resu
ltin

g

files

fo
r

in
d
ex

in
g
. Y

ello
w

 tex
ts after #

 are illu
stratio

n
. A

ll th
e co

m
m

an
d

s in
 th

is screen
sh

o
t in

clu
d
in

g

su
b
m

issio
n
 o

f th
e jo

b
 are lig

h
t w

o
rk

 an
d
 w

ere co
n
d
u

cted
 o

n
 th

e lo
g
in

 n
o
d

e.

 60

Summary of Chapter 4

• The reference genome FASTA and annotation GTF files can be downloaded

using the wget command.

• We use STAR with the genomeGenerate --runMode to produce the reference

genome indices, which is required for the subsequent alignment of RNA-seq

reads to the features of the reference genome.

• Human genome is huge, and it takes hours to index if the parameter is not

optimized.

• STAR supports multiple threading, and the indexing speed can be increased

significantly by using multiple CPUs via the --runThreadN option.

 61

Chapter 5

Align the sequence reads

to the reference genome

 62

5.1 STAR Alignment of one sample and multiple threading of the STAR command

With the human genome indices established, we can now align the sequenced reads to

the reference genome. This section introduces script for aligning a single RNA-seq

sample to human genome using the STAR command with the alignReads runMode.

5.1.1 General script

In nano text editor, prepare the file of STAR_align_individual.slurm and save it in the

fastq_files directory,

#!/bin/bash

STAR alignment of an individual RNA-seq sample

#SBATCH --job-name=STARalignment_individual

#SBATCH --partition=express

#SBATCH --nodes=1

#SBATCH --ntasks=1

#SBATCH --cpus-per-task=12

#SBATCH --time=02:00:00

#SBATCH --mem=40G

#SBATCH --mail-type=FAIL

#SBATCH --mail-user=kejinhu@uab.edu

#SBATCH --error=align.err

#SBATCH --out=align.out

 module load STAR

STAR --runMode alignReads --runThreadN 12 \

--genomeDir /data/user/kejinhu/RNA_seq_tutorial/humanGenomeIndex \

--outSAMtype BAM Unsorted \

--outFileNamePrefix SRR10203570 \

--readFilesIn /data/user/kejinhu/RNA_seq_tutorial/fastq_files/SRR10203570_1.fastq \

/data/user/kejinhu/RNA_seq_tutorial/fastq_files/SRR10203570_2.fastq

Then, submit this file in the directory of fastq_files,

sbatch STAR_align_individual.slurm

In the --readFilesIn option, the FASTQ files of the two sequencing mates should be

separate by a space. For single-end RNA-seq data you just provide one file name as the

value of the --readFilesIn. The path to the FASTQ files can be omitted here since the

SLURM batch file is saved and will be submitted in the same directory of the FASTQ

files, i.e., --readFilesIn SRR10203570_1.fastq SRR10203570_2.fastq.

 63

All the operation/result files will be saved in the directory where the
align_individual.slurm file is located and submitted. You can add a path to the --

outFileNamePrefix option if you want to place alignment files somewhere else. You can

save the stdout and stderr files in the directory you define for the --error, --out, or --chdir

flags (with path values).

5.1.2 Increase alignment speed with multiple threading

Please note that STAR allows for multiple threading, which is parallel calculations at

the data level (for the sample level parallelism of alignment, see Section 5.3). The above

code uses 12 CPUs as defined in --cpu-per-task=12 and --runThreadN 12. You can find
out the alignment speed of your script using the .progress.out files of STAR alignment

results, for example,

cat SRR10203570_Log.progress.out

On Cheaha HPC, for counting a single RNA-seq sample the speed roughly doubles when

the number of CPUs doubles before 8 CPUs, and the increasement of alignment speed

slows down after that although it still increases till 12 CPUs, but the alignment speed
reaches plateau beyond 16 CPUs. Here are the approximate alignment speeds for various

number of CPUs on Cheaha for aligning the sample SRR1020370,

1 CPU ~71 million reads/hour (M/h)
2 CPUs ~140 M/h
4 CPUs ~280 M/h
8 CPUs ~540 M/h
10 CPUs ~590 M/h
12 CPUs ~610 M/h
16 CPUs ~630 M/h
24 CPUs ~630 M/h

5.1.3 Submit the alignment job as an interactive job

You can also directly run the above STAR code on bash terminal for alignment of a

single sample without generating a file. To do this, you request resources first using srun,

and run the above code on the pseudoterminal. For example, request resources using
srun -c 12 -N 1 -n 1 --mem-per-cpu=3G --pty /bin/bash, and run the above STAR code

directly as an interactive job. Please note that if you just request --mem=3G, you will

see an error warning of “Bus error” after running the above STAR code because a total

of 3G memory is too low for this work.

 64

5.2 Serial alignment of multiple RNA-seq samples to the human genome

Submitting alignment job one sample each time is inefficient. We can submit one

alignment job for all the RNA-seq samples of a project at one step using a bash for loop.

After submission of the job the samples will be aligned one after one automatically (a

serial alignment process). The alignment/mapping job need to be submitted via SLURM

job scheduler as a non-interactive work since this process takes a lot of resources and
time. We can make a directory of code_log where the SLURM code and SLURM stdout

(standard output) and stderr (standard error) files will be saved when you will submit

the job from this directory.

cd /data/user/kejinhu/RNA_seq_tutorial/fastq_files

mkdir code_log

nano STARserialAlign.slurm # This opens the nano text editor with the

file name of STARserialAlign.slurm.

In nano, prepare a script file named STARserialAlign.slurm with the following code,

#!/bin/bash

STAR serial alignment of multiple samples

#SBATCH --job-name=STARserialAlignment

#SBATCH --partition=express

#SBATCH --nodes=1

#SBATCH --ntasks=1

#SBATCH --cpus-per-task=12

#SBATCH --time=02:00:00

#SBATCH --mem-per-cpu=8G

#SBATCH --mail-type=FAIL

#SBATCH --mail-user=kejinhu@uab.edu

#SBATCH --error=serialAlign.err

#SBATCH --out=serialAlign.out

module load STAR

for i in /data/user/kejinhu/RNA_seq_tutorial/fastq_files/*1.fastq; \

do STAR --runMode alignReads --runThreadN 12 \

--genomeDir /data/user/kejinhu/RNA_seq_tutorial/humanGenomeIndex \

--outSAMtype BAM Unsorted \

--outFileNamePrefix ${i%1.fastq} \

--readFilesIn $i ${i%1.fastq}2.fastq; done

 65

Then, submit the SLURM file from the directory of code_log,

sbatch STARserialAlign.slurm # This submits the BATCH script in the file of

STARserialAlign.slurm to SLURM in the directory where the file STARserialAlign.slurm

is located. The full or relative path should be provided if the job is submitted from

any other directory. But, the stderr and stdout files will be saved in the submitting

directory when their paths are not defined.

For the SLURM part of the code, please refer to the descriptions in the genome indexing

section (Section 4.4), and consult the online sbatch manual,

man sbatch # This brings about the online manual for the sbatch command of

the SLURM controller. It is very long. You can directly go to the specific options used

here by page down or up. Hit the key q to quit the help manual page. You can also

get help information by issuing sbatch -h or sbatch --help.

This code uses the bash for loop, which has a syntax of “for [variable] in [character

string]; do [application code]; done”. In the above case, i is the variable. The character
string provides the file names and their absolute path. When the script file

STARserialAlign.slurm is saved and submitted in the directory where the FASTQ files

are located the path to the FASTQ files can be omitted. In this case it can be shortened

to “for i in *1.fastq” and other codes are the same. The wild card * here is used to

represent the unique part of each FASTQ file name, i.e., sample names (* denotes any
element in the string with undefined number of elements). The backslash \ indicates

Figure 25. Screenshot of the SLURM BATCH script in nano text editor. Shaded

in green are references of shortcuts for some nano functionalities. Red texts after

and vertical bars are illustration.

Request 12 CPUs.
Request 2 hours of wall time.
Request 8G/CPU of memory (total 96G).

Define the partition.

The shebang line.

Define the file names of stdout and stderr files.

A Comment

The bash script for

STAR alignment (the for loop is

used to algn all the 7 samples

in this code).

Load the STAR software to the compute node.

 66

continuation of a command line. Please note that the continuation operator \ should

occupy the last position of the line and there should not even be a space after it.

Please refer to the STAR vignette about each option used here. The default value for the

--runMode option is alignReads, and therefore it can be omitted here. For the --

readFilesIn option, this code defines a procedure for alignment of the paired-end RNA-

seq reads, $i and ${i%1.fastq}2.fastq. The operator % here means the substring 1.fastq
is deleted, and in this code the deleted 1.fastq is replaced with 2.fastq. Please note that

the two file names for the paired-end reads should be separated by a space in the script.

If the FASTQ files are compressed, you do not need to decompress them, and we just

add the option of --readFilesCommand zcat in the STAR command. The option of --
outFileNamePrefix defines the unique part of the output file names, i.e., the sample

names. Again, we exclude the 1.fastq part (called substring) in the output file names by

string manipulation using the % operator, which means the substring after it will be

deleted. The output files are automatically saved in the same directory defined by the

character string for the FASTQ source files. The location of the human index files is
defined by the --genomeDir option. The --outSAMtype option defines the format of the

output alignment files. The above code gives two values to this option, BAM and

Unsorted. Please note that STAR has an internal sorting function, and you can define it

by giving the --outSAMtype an additional value of SortedByCoordinate. Usually, the
sorting is conducted after alignment using the SAMtools software (see below). With the

Cheaha resources requested above, it took around 30 minutes to align the 7 samples used

in this tutorial. On average, each alignment took slightly over 4 minutes, but the time

for each sample may varies. Alignment is a slow process. This quick alignment is

achieved because STAR is an ultrafast aligner with a multiple threading function. To
achieve high speed alignment by multiple threads/CPUs, here we give a value of 12 to

the option of --runThreadN. This means you are using 12 CPUs to align the same sample.

The mapping speed is recorded in the file of .progress.out and you can find it out using,

cat SRR10203569_Log.progress.out

5.3 Mapping multiple RNA-seq samples to genome by sample parallelism

The above alignment code with a for loop map the RNA-seq samples one after one. The

alignment time of an RNA-seq project can be further shortened using parallel calculation at the

sample level. Parallel alignment allows mapping of many RNA-seq samples simultaneously.

Here, I introduce sbatch array for parallelism. For an alternative method of parallel operation,

see Section 7.3 (parallel counting of reads). In nano text editor, prepare the following code

with a sbatch file name of parallel_align.slurm and save it in the cod_log directory,

#!/bin/bash

Parallel STAR alignment at the sample level

 67

#SBATCH --job-name=STARalignment_parallel

#SBATCH --partition=express

#SBATCH --nodes=1

#SBATCH --ntasks=7

#SBATCH --cpus-per-task=5

#SBATCH --time=02:00:00

#SBATCH --mem=100G

#SBATCH --mail-type=FAIL

#SBATCH --mail-user=hukejin@gmail.com

#SBATCH --error=align.err

#SBATCH --out=align.out

#SBATCH --array=0-6

module load STAR

READ1=("SRR10203569_1.fastq" "SRR10203570_1.fastq" "SRR10203571_1.fastq"

"SRR10203572_1.fastq" "SRR10203573_1.fastq" "SRR10203574_1.fastq"

"SRR10203575_1.fastq")

READ2=("SRR10203569_2.fastq" "SRR10203570_2.fastq" "SRR10203571_2.fastq"

"SRR10203572_2.fastq" "SRR10203573_2.fastq" "SRR10203574_2.fastq"

"SRR10203575_2.fastq")

STAR --runMode alignReads --runThreadN 5 \

--genomeDir /data/user/kejinhu/RNA_seq_tutorial/humanGenomeIndex \

--outSAMtype BAM Unsorted \

--outFileNamePrefix ../${READ1[$SLURM_ARRAY_TASK_ID]%_1.fastq} \

--readFilesIn ../${READ1[$SLURM_ARRAY_TASK_ID]} \

../${READ2[$SLURM_ARRAY_TASK_ID]}

In the above codes, we use two bash variables to define the sample names, READ1 and

READ2, each for one sequencing mate of a sample (paired-end sequencing). When

defining a bash variable do not add any space around “=”; you separate elements/strings

by a space but not comma nor others (see code above).

We use the --array= flag with values of 0-6 (or 0, 1-6) to define 7 parallel tasks to be

run simultaneously. Please note that the element positions for the bash array start at 0,

not one, and therefore the array values are from 0 to 6 (not 1 to 7). The numbers of the

variable SLURM_ARRAY_TASK_ID correspond to the number of the --array flag, i.e.,

0-6, which define the elements in the READ1 and READ2 bash array variables by

positions. Please note that you use the same values for the --cpus-per-task and --

runThreadN flags here. The ../ in the --outFileNamePrefix and --readFilesIn options

means the alignment and related files will be saved in the parent directory (the

fastq_files directory), and that read the FASTQ files from the parent directory.

 68

#
 L

is
t th

e
 c

o
n

te
n

ts
 o

f th
e

 fa
s
tq

_
file

s
 d

ire
c

to
r
y
 b

e
fo

re
 a

lig
n

m
e
n

t.

#
 S

u
b

m
it th

e
 jo

b
 to

 th
e

 S
L
U

R
M

 m
a
n
a

g
e
r

#
 C

h
e

c
k
 th

e
 s

ta
tu

s
 o

f th
e

 S
L
U

R
M

 jo
b
.

#
 T

h
e

 s
td

o
u
t a

n
d
 s

td
e
r
r file

s
 a

re
 g

e
n
e
ra

te
d
 in

 th
e
 jo

b
 s

u
b
m

ittin
g
 d

ire
c
o

tr
y
 d

u
rin

g
 a

lig
n

m
e
n

t.

#
 G

o
 to

 th
e

 p
a
re

n
t d

ire
c

o
tr

y
.

#
 L

is
t th

e
 c

o
n
te

n
ts

 o
f th

e
 fa

s
tq

_
file

s
 d

ire
c
to

r
y
 a

fte
r a

lig
n

m
e
n

t.

#
 L

is
t th

e
 c

o
n

te
n

ts
 o

f th
e

 jo
b

 s
u
b
m

ittin
g

 d
ire

c
to

r
y
 b

e
fo

re
 a

lig
n
m

e
n
t.

#
 T

h
e

 jo
b

 h
a
s
 b

e
e

n
 r

u
n

n
in

g
 fo

r 6
′5

8
″
 o

n
 th

e
 c

0
1

7
3

 n
o
d
e

.

#
 T

h
e
 jo

b
 h

a
s
 b

e
e
n

 r
u

n
n

in
g
 fo

r 3
′5

3
″
 o

n
 th

e
 c

0
1
7

3
 n

o
d

e
.#

 T
h

e

re
s
u
ltin

g

file
s
 o

f

S
T
A

R

a
lig

n
m

e
n
t.

F
ig

u
re 2

6
. S

cre
en

sh
o
t fo

r th
e a

lig
n
m

en
t p

ro
c
ess. Y

ello
w

 tex
ts are

 th
e au

th
o
r’s illu

stra
tio

n
.

 69

Submit the sbatch file in the directory of code_log,

sbatch parallel_align.slurm

When the alignment is undergoing, you can check the job status using,

 squeue -u [your_HPC_account_name]

From the above code, you can see the job/array ID, and you can further check the status of your

array job using the SLURM command sacct (display job accounting data),

sacct -j [array_ID] --format=jobid,jobname,start,end,state # The -j option

means job or job step, and the job ID number is the value. Please note that there is

no space anywhere (around = or between values) in the option of accounting format,

i.e., “--format=jobid,jobname,start,end,state”(see Figure 27).

Please note that parallel alignment not necessarily shortens the alignment time. The above code

started alignment of the 7 samples at the same time (shaded in Figure 27) and used less than 10

minutes to align the 7 samples here (compare the Start and End times for all the 7 tasks in Figure

27). However, if 2 CPUs ware used for each sample (the --runThreadN value is 2; parallelism

at the data level), you do not see much improvement. This is because aligning individual

samples become a bottleneck when less CPUs are used for aligning each sample. You can

increase the thread number, but you likely wait for the resources from your HPC clusters, and

as a result your job cannot be completed sooner because some samples may start late due to

lack of compute resources from your HPC even though you use the array code. Therefore, we

should balance between data and sample level parallelisms.

Figure 27. Parallel alignments of 7 samples. Please note that all 7 tasks/alignments start

at the same time (shaded with gray) but may end at different times. Here, task 4 is still

running. The sacct command is shaded in red.

 70

5.4 Briefly review the alignment output text files

STAR alignment generates 5 files for each sample in the fastq_files directory,

_Aligned.out.bam, _Log.final.out, _Log.out, _Log.progress.out, and _SJ.out.tab.

The .bam files are compressed files, and others are all text files. To find the type of file,

you can call the command of file with the syntax of file your_file_name, for example,

file SRR10203575_Aligned.out.bam # This returns file type information as “gzip

compressed data”.

file SRR10203575_Log.out # This reveals that it is an “ASCII text” file.

For the text files, you can briefly review them using the head, less, cat, or tail commands.
For the short files (.Log.final.out), you can check with any command. For the long file,

you can review using the less, head, or tail commands. To find out how many lines in

each file, you can call the word count command, wc -l file_name. You can also find out

the sizes of all files in the current directory by issuing ls -hl. As you can see that the

BAM file is huge, and among the text files SJ.out.tab is the greatest one. Of course, for
the text file you can examine using a text editor, for example the nano text editor. To

open the text file in the nano text editor, just call, nano file_name, for example,

nano SRR10203575_Log.final.out # This opens the text file in the nano text

editor.

The _Log.final.out files are useful since it contains statistics of the read counts. Let us
output one of these files using the cat command,

cat SRR10203569_Log.final.out # This outputs the mapping statistics (see

screenshot in Figure 28)

As you can see that the Log.final.out file provides many basic statistics for the alignment

of read counts including input reads (total reads), number of the uniquely mapped reads,
numbers of unmapped reads of different categories, statistics of reads with multiple

matches, and others (Figure 28).

Of course, you can transfer these text files to your desktop using FileZilla or Globus,

and then review them with your desktop text editor such as TextEdit. You may not be
able to open the text files generated in Linux environment. This issue may be solved if

you change the file extension to .txt from .out or .tab. With the .txt extension, these files

can be opened using Excel.

 71

5.5 Aggregate the Log.out files using MultiQC

In the parent directory of the fastq_files, using the following code to aggregate the

mapping summaries for all of the samples,

srun --pty bash # This requests compute resources using the default

options. The multiqc operation is a light work but it still needs to be conducted on a

compute node not the login node.

module load MultiQC

Figure 28. Screenshot for alignment statistics in the file of

SRR10203569_Log.final.out.

 72

multiqc fastq_files

The above code generates one directory, multiqc_data and one HTML file in the parent
directory of fastq_files. There are text files inside the multiqc_data directory, one log

file (multiqc.log), one json code file (multiqc_data.jason), one source record file

(multiqc_sources.txt), and three result summary files (multiqc_fastqc.txt,

mutiqc_general_stats.txt, multiqc_star.txt). The multiqc_fastqc.txt also aggregates the

FastQC results you generated previously since the results are inside the directory of

fastq_files. The FastQC results are aggregated even though the results are placed in a

separate directory under the directory of fastq_files. However, there is no

multiqc_fastqc.txt file if you do not FastQC your FASTQ files first. In this case multiqc

aggregates the STAR mapping results only, i.e., you have the multiqc.star.txt file only

after you run the multiqc command on the fastq_files directory without any FastQC

results. You can examine the results in text files with the nano text editor or the cat

commands, or you can examine them with Excel or web browser after transferring them

to your desktop computer.

5.6 Explore the BAM files using SAMtools

The BAM files are binary form of SAM files, and only the latter are human readable. If
You call head sample.bam, and it will display some messy code, or may not output

anything at all. To see the meaningful BAM file, you should use the SAMtools utility.

For formats of SAM/BAM files, you can refer to https://samtools.github.io/hts-

specs/SAMtags.pdf 15.

List the contents of the fastq_files directory.

Request interactive compute resources.

Go to the parent directory.

Load the MultiQC module on the compute node.

List directory content before aggregation.

List the directory contents after aggregation.

Go to the automatically generated new multiqc_data directory.
List the files of the aggregated QC data.

Aggregate the QC data using the command of multiqc on the compute node.

On-screen progress reports for the aggregation process.

Still on the compute node, and give up the interactive compute node using the exit command.

Back on the login node

The aggregated QC data (underlined)

Resulting aggregated QC files

Figure 29. Aggregate the QC results of STAR alignment.

https://samtools.github.io/hts-specs/SAMtags.pdf
https://samtools.github.io/hts-specs/SAMtags.pdf

 73

module spider samtools # When you use module spider, the module names

are not case sensitive. But, when you use module load, it is. You can even use the

incomplete module name when you use the command of module spider or module

avail, e.g., module spider samto, or module avail samt.

module load SAMtools # This code loads the latest version of SAMtools.

You can also load a defined version by providing the full module name, for example,

module load SAMtools/1.9-GCC-6.4.0-2.28. You will see a warning when you call

“module load samtools”because it is case sensitive.

 After loading the SAMtools, you can check its version and basic functionality. Try the

following commands,

samtools --version

samtools

samtools --help

man samtools

Now, you can use samtools view to see the BAM files. Because a BAM file is huge, we

just check the first a few rows using the pipe operator | and the head command. The pipe

operator means using the standard output (stdout) of the first command (samtools view

here) as the standard input (stdin) of the following command (head here),

samtools view my.bam | head # This prints out the data for the first 10

alignments of a BAM file of your interest. You can try any of the 7 BAM files in this

tutorial. If you just want to check the first alignment, you can define it by giving a

value to the -n option of the head command, samtools view my.bam | head -n 1.

From the output of this command, we can see the reference sequence of each

alignment, which is the 10th column of the SAM file. This is another way you can tell

what is the read length of your RNA-seq protocol. Count the length of any of the

aligned reference sequence and it is the ReadLength value to calculate the value for

the option --sjdbOverhang when you build the genome indices described in

Chapter 4.

The above code just gives you some of the alignments without the header information,

and you can use the header option -h to include the header information,

samtools view -h my.bam | head # This displays the first 10 lines of the header

information. You cannot see any alignment because the header information has

almost 200 lines. Each chromosome or a contig occupies one line. At the end of the

 74

header, the STAR alignment code is included. You can see the STAR codes if you

increase number of lines for the line option -n of the head command as, samtools

view -h my.bam | head -n 200. The BAM file is large, and it takes much longer time

to output the results if you use the tail command than the head command.

I you want to check more of the alignment BAM/SAM files including the header, you

can include the less command along with the pipe operator |,

samtools view -h my.bam | less # This allows you to examine your BAM/SAM

file page by page, or line by line.

 75

Summary of Chapter 5

• We use the alignReads --runMode of the STAR command to align RNA-seq
reads to features of the reference genome.

• Alignment of one individual RNA-seq sample can be sped up by multiple

threading option of the STAR command (parallelism at the data level). Multiple

threading can double the alignment speed when the number of CPUs double till

8 CPUs, and the increase of CPUs can further increase the alignment speed until
you have around 12 CPUs.

• A code for serial alignment of multiple samples can save you the hands-on

time.

• The alignment speed can be further increased by simultaneous alignment of

multiple samples using a job array script (parallelism at the sample level).

 76

Chapter 6

Sort, index and visually inspect the

aligned BAM files

 77

Before we count the reads to each feature and conduct the statistics analyses, we need

to sort and index the BAM files.

6.1 The samtools sort syntax and sorting one sample

To demonstrate the syntax of the samtolls sort command, we first test sorting one BAM

file first in the interactive mode using the code,

srun --pty bash

samtools sort -o my.sortedByCoord.bam -O bam my.bam # The -o option

means writing the final output to the file with a name defined in this option rather

than as a standard output, while the -O option defines the output file format (BAM,

SAM, or CRAM). Please note that by default samtools sort by coordination of

chromosome positions, and therefore we add an informative tag of sortedByCoord

to each sorted BAM file name.

6.2 Serial sorting and multiple threading at the data level

When sorting all the BAM files using one script we prepare a SLURM batch script file

named samtools_sort.slurm using the for loop in nano text editor,

#!/bin/bash

Sorting the BAM files using samtools sort

#SBATCH --job-name=SAMtoolsSort

#SBATCH --partition=short

#SBATCH --nodes=1

#SBATCH --cpus-per-task=1

#SBATCH --ntasks=1

#SBATCH --mail-type=FAIL

#SBATCH --mail-user=your.email@domain

#SBATCH --error=sort.err

#SBATCH --time=05:00:00

#SBATCH --mem-per-cpu=5G

#SBATCH --out=sort.out

module load SAMtools

for i in /data/user/kejinhu/RNA_seq_tutorial/fastq_files/*.bam; \

do samtools sort -o ${i%out.bam}sortedByCoord.bam -O bam $i; \

done

 78

In the batch job code, you should define the path to your source BAM files. The sorted

output files will be saved in the same directory of the source BAM files using the above
code. However, the submitting directory of the script file samtools_sort.slurm is the

working directory. You may save and submit the script file in the directory containing

the target BAM files and make your code shorter (just “for i in *.bam” without the path).

After preparing the code above in nano, submit the sorting job in the directory containing

the script file using the sbatch command,

sbatch samtools_sort.slurm # This establishes a non-interactive job for sorting

the BAM files.

In the BAM source file directory (fastq_files directory in this tutorial), you can see the

resulting sorted files, and the temporary files of the sorted parts before merging. After

the sorting is completed, you can see the list of the files with their sizes using ls -hl. You
will see that the sorted BAM file is much smaller than its parent BAM file.

With the requested resources of Cheaha in the above code, it took around 103 minutes

to sort the 7 BAM files in this tutorial. Increasing the number of CPUs from one to 12

did not improve sorting speed and need the same amount of time to sort the 7 samples.
This is because by default samtools sort uses one CPU only. However, samtools sort

does allow multiple threading (multiple CPUs), but you need to define it using the -@

or --thread option. When -@ 3, that means 3 CPUs are allowed, is defined it took around

39 minutes to sort the 7 samples. If the --thread value is further increased to 12, Cheaha
took around 10 minutes to sort the 7 samples. However, further increase of CPUs from

12 to 24 for multiple threading improved the speed very little and Cheaha spent around

8 minutes and 20 seconds to complete sorting the 7 samples.

6.3 Combine parallel sorting and multiple threading

We can shorten the alignment time by parallel sorting at the sample level using the --array tag.

Prepare the following sbatch file in nano text editor with a file name of parallel_sort.slurm,

#!/bin/bash

Parallel sorting the BAM files using samtools sort

#SBATCH --job-name=SAMtoolsSort

#SBATCH --partition=express

#SBATCH --nodes=1

#SBATCH --ntasks=7

#SBATCH --cpus-per-task=1

#SBATCH --mail-type=FAIL

#SBATCH --mail-user=kejinhu@uab.edu

#SBATCH --error=sort.err

 79

#SBATCH --time=02:00:00

#SBATCH --mem=50G

#SBATCH --out=sort.out

#SBATCH --array=0-6

module load SAMtools

FILE=("SRR10203569Aligned.out.bam" "SRR10203570Aligned.out.bam"

"SRR10203571Aligned.out.bam" "SRR10203572Aligned.out.bam"

"SRR10203573Aligned.out.bam" "SRR10203574Aligned.out.bam”

"SRR10203575Aligned.out.bam”)

samtools sort -o ${FILE[$SLURM_ARRAY_TASK_ID]%out.bam}sortedByCoord.bam -

O BAM ${FILE[$SLURM_ARRAY_TASK_ID]}

The above code uses a bash array variable FILE to define the list of BAM files to be

sorted. Please note that there is not any space around the assignment sign “=” when

defining an array variable. The 7 tasks are defined in the --array flag. Using 1 CPU per

task, it took <17 minutes only to complete the soring of 7 samples (vs 105 minutes by

serial sorting using more CPUs).

With the above code, increasing the number of CPUs from 1 to 2 or increasing the total
memory from 50 G to 100 G, or increasing both all spent similar time to complete the

sorting of the 7 samples. This is because samtools uses one CPU per task by default.

SAMtools support multiple threading and conducts parallel sorting at the data level of a

single file. You can use the multiple threading option -@ to have multiple CPUs to sort

each sample. In the above code, when you set -@ 2 (i.e., sort each sample using 2 CPUs),
the total time for sorting the 7 samples was around 8 minutes (vs 17 minutes). Further

increase of threads to 3 additionally improved the speed a little bit (around 5 minutes

for sorting the 7 samples).

6.4 Index the sorted BAM files using SAMtools

The next step is indexing the sorted BAM files using the samtools index command.

Indexing the sorted BAM files is a light work taking around 1 minute per sample, and

we can use srun to submit it as an interactive job. Do not use the login nodes even for a

work of 1 minute. It is said you can run a code/command on the login nodes only if it

takes less than 1 second. You can index these files using the following srun SLURM
code under the directory where your sortedByCoord.bam files are located.

cd /data/user/kejinhu/RNA_seq_tutorial/fastq_files

 80

 srun -c 1 -N 1 -n 1 --pty /bin/bash # The option -N is equivalent to --

nodes; option -n is the same as --ntasks; -c is the one-letter version of the long --

cpus-per-task option.

samtools index -b my_sortedByCoord.bam # This script automatically generates

a file of my_sortedByCoord.bam.bai in the same directory. The -b option means to

create an index file for the BAM file (BAM Index, BAI). The -b option is the default

and therefore you can omit it, i.e., samtools index my_sortedByCoord.bam will work

the same.

If you want to index all the BAM files in the working directory, use the for loop code

below after you have been granted the resources requested by srun,

for i in *.sortedByCoord.out.bam; do samtools index -b $i $i.bai; done #

the $i.bai can be omitted in this code. The -b option is the default and therefore can

be omitted as well.

When you index your sorted BAM files by submitting a batch SLURM file, you should
specify the path to the source sorted BAM files, and the code is the same otherwise. You

do not need to define the path if you save and submit the SLURM batch script file in the

same directory as are the sorted BAM files. We can prepare the following sbatch

SLURM file in nano text editor with a file name of samtools-index.slurm, which is saved

in the same directory as the sorted BAM files.

Sorted
& merged

Sorting
To be
sorted

Sorted
& merged

Sorted
& merged

Sorting

To be
sorted

To be
sorted

Sorting has been running
for 52′ 22″ on node c0198.

Monitor the sorting progress using ls command.

Checking the sorting job status.

Figure 30. Screenshot for sorting the aligned BAM files. BAM Files of sorted, sorting,

and to be sorted are labelled with yellow texts.

 81

#!/bin/bash

SAMtools indexing of the sorted BAM files

#SBATCH --job-name=BAMindexing

#SBATCH --partition=express

#SBATCH --nodes=1

#SBATCH --ntasks=1

#SBATCH --cpus-per-task=1

#SBATCH --mem=5G

#SBATCH --time=0:30:00

#SBATCH --mail-type=FAIL

#SBATCH --mail-user=kejinhu@uab.edu

#SBATCH --error=BAMindex.err

#SBATCH --out=BAMindex.out

module load SAMtools

for i in *sortedByCoord.bam; do samtools index -b $i; done

Again, this code uses the for loop to conduct the repetitive tasks for different samples.
After preparing the above sbatch SLURM file in the nano text editor, you can submit it

using sbatch in the same directory the script file is located,

sbatch samtools-index.slurm

Please note that like samtools sort the samtools index command also take the --

thread (-@) option. When we increase CPU from one (default) to 24 (samtools

index -@ 24 or --thread=24), Cheaha takes 1 minutes only to complete the
indexing of the 7 sorted BAM files (vs 7 minutes).

6.5 Briefly review the BAM files

You can see the alignments (SAM file contents) for any of your BAM files using the

samtools view command,

srun --pty /bin/bash # This allocates you with compute resources using the

default options. When you still have resources after the indexing process, you do

not need to request again. When you close the pseudo terminal shell window for

the allocated compute nodes or even the dashboard window (not the browser), it

does not give up the allocated resources. In this case, you can go back to the clusters

via the Clusters tab on the HPC dashboard and find out the job ID using squeue -u

 82

username, and then re-establish the pseudo terminal shell for the allocated nodes

using, srun --jobid [ID#] --pty /bin/bash. If you want to give up the resources, use

the exit command. When you close the browser (not the clusters window nor the

dashboard window), you will also lose your compute nodes.

module load SAMtools

samtools view my.sortedByCoord.bam | head # This displays the first 10

alignments without the header information of the BAM file as a standard output in

the SAM format. Please note that you can view the BAM and sorted BAM files using

the samtools view command, but not the .BAI file because the .BAI file is the index

file of the BAM file without the sequence data.

If you use the header option -h for the samtools view command, you can see the header

information of each BAM file as the SAM output. Let us display the first 210 lines of

your BAM file in the SAM format,

samtools view -h my.sortedByCoord.bam | head -n 210 # This displays on

your screen the first 210 lines of the BAM file starting from its header information.

As you can see, the alignment, sorting software and codes are also included in the

header information (in the @PG lines and @CO lines). The header of a BAM file

includes information about the entire file, such as version number (VN) of the SAM

specification and sorting status (in the @HD line), reference sequence name and

length (SN and LN in the @SQ lines), as well as alignment and sorting methods and

codes. SN indicates names of chromosomes or contigs.

After indexing, you can also check the alignments in a specific region of a chromosome

using the samtools view command,

samtools view my.sortedByCoord.bam 4:20100000-20180000 # This prints

out the read alignments between 20100000 and 20180000 on chromosome 4 on

your screen (standard output).

You can view the alignments line by line or page by page using the less command in

combination with the samtools view command,

samtools view my.bam | less # After issuing this command you can use

the down- and up-arrow keys, or page down and up keys to view the files. You can

view the sorted or unsorted BAM files using the samtools view command. The file is

long, and you can exit the file and return to the shell prompt line by hitting the q

key.

You can check the simple statistics for a BAM file,

 83

samtools idxstats my.sortedByCoord.bam # This code returns a statistic table

(standard output) on your screen (the default destination of your stdout) for the

target file with 4 columns in the following order: reference sequence names

(chromosome or contig IDs), sequence length, number of the mapped

reads/segments, and number of the unmapped reads/segments.

If you want to save the statistic output as a file and examine the results using other tools,

you can use the standard output (stdout) redirection operator >,

samtools idxstats my.sortedByCoord .bam > my.sortedBCoord.bam_stats #

This saves the stdout in the file of my.sortedByCoord.bam.stats in the same directory.

6.6 Visual inspection of your alignments with IGV

You can visually review the tracks of the alignments using the IGV (Integrative

Genomics Viewer) tool. IGV is an open-source free software, which can be used on
iMac, Windows and Linux with a web version 16-18. Your HPC may have an IGV server,

and you can conveniently examine your BAM files without transferring the BAM files

to your local computers. If your HPC does not have an IGV server, you can view the

alignment using your BAM files on your desktop IGV tool. Your BAM files need to be

sorted and indexed in order to be viewed with IGV.

First, you request an interactive IGV app from your HPC dashboard (see the app list in

Figure 34) with the default or customized resources. When your IGV resource is granted,

launch it, and you will see the IGV app window. Click on the File tab to bring about the
pull-down menu, and then click on the “Load from file” button. A new window interface

pops up. Find the directory of your BAM files via the FileSystem. Go to the directory

containing the BAM files, and select the sorted BAM file to load. Please note that your

corresponding index file (with the .bai extension) should be in the same directory of

your parent sorted BAM files. This will automatically create three tracks for each BAM
file, coverage track, splice junction track, and alignment track (Figure 31).

You can examine the alignment for a specific chromosome, a region of a chromosome,

or a specific gene by specifying the chromosome, chromosome region, or a gene symbol

in the text search box (Figure 31). For convenience, you can define the popup text

behavior in data panels: “Show Details on Hover”, “Show Details on Click”, or “Never

Show Details”. You can zoom in and out the alignments using the + and – buttons at the

top-right corner (Figure 31). You can navigate along the coordinates by dragging the

tracks (leftward or rightward). Desktop IGV works similarly.

 84

F
ig

u
re 3

1
. V

isu
al in

sp
e
ctio

n
 o

f R
N

A
-seq

 alig
n

m
en

t resu
lts. S

am
p
le S

R
R

1
0
2
0
3
5
6
9
 is u

sed
, an

d
 th

e M
Y

C
 g

en
e

is in
sp

ected
 h

ere. P
lease n

o
te th

at th
ere are tw

o
 co

lo
rs in

 th
e alig

n
m

en
t track

 (b
lu

e an
d
 red

) in
d
ic

atin
g

 u
se o

f

th
e n

o
n

-stran
d
ed

 p
ro

to
co

l o
f R

N
A

-seq
. S

o
m

e IG
V

 c
o
m

p
o
n
en

ts are illu
strated

 in
 red

 tex
ts.

#
 C

o
v
e

ra
g
e

 tra
c
k

#
 S

p
lic

e
 ju

n
c
tio

n
 tr

a
c
k

#
 A

lig
n
m

e
n

t

tra
c
k

#
 R

e
fe

re
n
c
e

g
e

n
e

 m
o

d
e
l

#
 G

e
n

o
m

ic
 c

o
o
r
d

in
a
te

s
#
 C

h
ro

m
o

s
o

m
e

 id
e

o
g

ra
m

#
 Z

o
o
m

 b
a

r
#
 S

e
a
r
c
h

 b
o
x

#
 R

e
fe

re
n

c
e

 g
e

n
o
m

e
 s

e
le

c
to

r

#
 T

ra
c
k

n
a

m
e

s

#
 P

o
p
u

p
 te

x
t

b
e
h
a
v
io

r m
o

d
ifie

r

 85

Summary of chapter 6

• The aligned reads should be sorted and indexed before counting.

• We use the SAMtools command samtools sort to sort and samtools index to
index the BAM files.

• SAMtools also supports multiple threading. The sorting and indexing speed can

be enhanced by multiple threading via the option of --thread.

• Indexing is fast but sorting is much slower. Sorting can also be sped up using

bash array script. Array and multiple threading can be combined to reach the
maximum speed of sorting.

• We can use the samtools view command to briefly review the aligned BAM files.

• The sorted and indexed BAM files can be reviewed visually using the IGV tool.

 86

Chapter 7

Counting the reads to

features using HTSeq

 87

7.1 Find out the strandedness of RNA-seq data using IGV

To count the reads using the htseq-count command of the HTSeq module, we need to

define the strandedness of your sequencing method. In fact, you can find out such a

sequencing method without asking the sequencing facility. One simple way to reveal

sequencing strandedness is to use IGV. In the IGV alignment track (the bottom track in

Figure 31), right click your mouse to bring about the popup menu. In the popup menu,
bring about the “color alignment by” sub-menu and choose “first-of-pair strand”. This

will highlight the aligned reads with two colors, each for one strand. Please note that

you need to uncheck the “shade base by quality” and “show mismatched bases” to show

the strand colors only. It is stranded sequencing if you see only one color for the aligned

reads to a specific gene; it is not stranded sequencing if you see two colors in the aligned
reads to a gene (the MYC gene as an example in Figure 31). You need to choose the

correct version of your reference genome in IGV that agrees with the version of the

reference genome used for the alignment process. Otherwise, the reference coordinates

may not match the RNA-seq alignment. In this tutorial, we use hg38, not hg19

(selectable from the box in the upper-left corner in Figure 31).

7.2 Count the reads to features using the htseq-count command (serial

counting)

Counting and alignment/mapping are the two processes that are time consuming. When

the script is not optimized, it takes more than one hour to count one file/treatment even

on Cheaha (for example, using the regular setting of htseq-count with great resources of

24 CPUs and 10 G per CPU, it took 20 hours and 27 minutes to count the 12 human

RNA-seq samples with 30-40 million reads per sample. Each sample needs around 102
minutes to count.). Therefore, you may use the “medium” value for the “partition”

option of SLURM, and request more than one day of time (--time option) to count more

than 10 human RNA-seq samples when the code is not optimized. Sections 7.2 to 7.4

will introduce basic syntax of the htseq-count command and methods for efficient

counting.

In the directory with the sorted and indexed BAM files, open the nano text editor with a

file name of HTSeq_count.slurm,

nano HTSeq_count.slurm

In the nano text editor, prepare the following code to count the 7 samples in this tutorial

using a bash for loop code,

#!/bin/bash

HTSeq serial counting

 88

#SBATCH --job-name=HTSeq_Serial_Count

#SBATCH --partition=medium

#SBATCH --nodes=1

#SBATCH --ntasks=1

#SBATCH --cpus-per-task=1

#SBATCH --mem=1G

#SBATCH --time=14:00:00

#SBATCH --mail-type=FAIL

#SBATCH --mail-user=hukejin@gmail.com

#SBATCH --error=count.err

#SBATCH --out=count.out

module load HTSeq

for i in *Aligned.sortedByCoord.bam; \

do htseq-count -f bam -s no -r pos $i \

/data/user/kejinhu/RNA_seq_tutorial/Homo_sapiens.GRCh38.105.gtf > $i.count; \

done

Then, in the directory the HTSeq_count.slurm file is located, submit the job,

sbatch HTSeq_count.slurm # It took 7 hours and 32 minutes to count the 7

samples in this tutorial using the resources above (1 CPU, 1 G of memory). Increasing

CPUs and memory did not improve the counting, for examples, using 12 CPU and 8

G per CPU it took around 8 hours and 5 minutes to count the 7 samples in this

tutorial. This is because the default number of CPUs is one and there is no data level

multiple threading for the htseq-count function. There is a parallel counting option

with the command of htseq-count command, but it is at the sample level. When

using the -n (--nprocesses) option to implement parallel counting, you will have a

single output count table with counts of each sample as a column. This will need

different protocol/procedure for statistics analyses from that described in Chapter 8

below.

This code uses the for loop to count all the sorted BAM files with the common ending
of Aligned.sortedByCoord.bam. The syntax of the for loop is “for variable in character

string; do application code; done”. Here, “i’ is the variable;

“*Aligned.sortedByCoord.bam’ is the character string. Please note that the path to the

BAM files is omitted here because the HTSeq_count.slurm file and the BAM files are
located in the same directory, and we will submit this job in this directory. If you submit

the job in other directory, you should define the path to the BAM files. The resulting

count files will be saved in the same directory of the source BAM files with an file

extension of .count. The -f option defines the input file type, and the default is SAM.

Here, we define -f as BAM file. The -s option specifies the strandedness of RNA

 89

sequencing method and the default value is yes. Here, the sample RNA-seq was

sequenced using non-stranded library preparation method. The -r option defines the
sorting method, and the pos value means the BAM files are sorted by position or

coordinates. The htseq-count command requires the index GTF or GFF files and its full

path should be specified unless you submit the job in the directory where the GTF file

is located. Please note that BAM index (with the .bai extension) file is needed for the

htseq-count command, and should be located in the same directory as the corresponding
sorted BAM files. You index the bam file using the samtools index command as

introduced earlier. The \ is the continuation operator to break long command line into

two lines. > here is the re-direct operator, which divert the standard output into the file

name specified after >. Alternatively, we can use the -c (count output file) option to

specify the count output file names. In this case, you remove the “> $i.count” part and
add the “-c $i.count” option for the htseq-count command.

For the details about usage of the htseq-count command, you can load the HTSeq

module and use the help option for the htseq-count command, module load HTSeq, and

then htseq-count -h. Please note that the package name is case sensitive when you load
HTSeq. Please check your spelling if you cannot load the HTSeq module.

7.3 Simultaneous counting of multiple samples using srun

Counting is time consuming. The codes in the above section use the for loop to count
the 7 samples one after one, i.e., serial counting. Since counting of each sample takes

more than 1 hour, the total time for counting all the samples one after one is long. We

can shorten the total time by counting all the 7 samples simultaneously. To this end, we

combine the sbatch and srun commands. The srun command can be used within a sbatch

script to define job steps. Open the nano text editor with a file name of
parallel_count.slurm,

nano parallel_count.slurm

Then prepare the following code in the nano text editor,

#!/bin/bash

HTSeq parallel counting

#SBATCH --job-name=ParallelCounting

#SBATCH --partition=express

#SBATCH --nodes=1

#SBATCH --ntasks=7

#SBATCH --cpus-per-task=1

#SBATCH --mem-per-cpu=1G

#SBATCH --time=2:00:00

 90

#SBATCH --mail-type=FAIL

#SBATCH --mail-user=kejinhu@uab.edu

#SBATCH --error=count.err

#SBATCH --out=count.out

module load HTSeq

srun -n 1 -c 1 --exclusive htseq-count -f bam -s no -r \

pos -c SRR10203569.count SRR10203569_Aligned.sortedByCoord.bam \

/data/user/kejinhu/RNA_seq_tutorial/humanGenomeIndex/Homo_sapiens.\

GRCh38.105.gtf &

srun -n 1 -c 1 --exclusive htseq-count -f bam -s no -r pos \

-c SRR10203569.count SRR10203570_Aligned.sortedByCoord.bam \

/data/user/kejinhu/RNA_seq_tutorial/humanGenomeIndex/Homo_sapiens.\

GRCh38.105.gtf &

srun -n 1 -c 1 --exclusive htseq-count -f bam -s no -r pos \

-c SRR10203569.count SRR10203571_Aligned.sortedByCoord.bam \

/data/user/kejinhu/RNA_seq_tutorial/humanGenomeIndex/Homo_sapiens.\

GRCh38.105.gtf &

srun -n 1 -c 1 --exclusive htseq-count -f bam -s no -r pos \

-c SRR10203569.count SRR10203572_Aligned.sortedByCoord.bam \

/data/user/kejinhu/RNA_seq_tutorial/humanGenomeIndex/Homo_sapiens.\

GRCh38.105.gtf &

srun -n 1 -c 1 --exclusive htseq-count -f bam -s no -r pos \

-c SRR10203569.count SRR10203573_Aligned.sortedByCoord.bam \

/data/user/kejinhu/RNA_seq_tutorial/humanGenomeIndex/Homo_sapiens.\

GRCh38.105.gtf &

srun -n 1 -c 1 --exclusive htseq-count -f bam -s no -r pos \

-c SRR10203569.count SRR10203574_Aligned.sortedByCoord.bam \

/data/user/kejinhu/RNA_seq_tutorial/humanGenomeIndex/Homo_sapiens.\

GRCh38.105.gtf &

srun -n 1 -c 1 --exclusive htseq-count -f bam -s no -r pos \

-c SRR10203569.count SRR10203575_Aligned.sortedByCoord.bam \

/data/user/kejinhu/RNA_seq_tutorial/humanGenomeIndex/Homo_sapiens.\

GRCh38.105.gtf &

wait

 91

In the above code, we use 7 srun commands to define 7 job steps, each for counting one

sample. Please note that at the end of each job step, we use an ampersand sign & to send
the job step to the background and the next job step can start immediately. In other words,

the ampersand sign & removes the blocking feature of the srun command. At the end of

the last job step, we use a wait command so that the slowest job step can be finished,

i.e., no job steps will be canceled when the fast job steps have been completed. The

above codes are similar to that when you request 7 individual pseudo shell terminals and
run the htseq-count command on each pseudo terminal simultaneously. Please note that

we use the continuation operator in each srun command because the command line is

too long. The syntax for the htseq-count command is otherwise the same as that in the

serial job. The --exclusive option means “don't share CPUs for job steps”.

Please note that the total number of job steps (7 here) should be equal to the total number

of tasks defined by the #BATCH --ntasks tag.

Then, submit the job,

sbatch parallel_count.slurm

Figure 32. Parallel jobs start at the same time and run simultaneously. The start times

for all steps are highlighted by shading. Please note that each job step may end at

different times (see the End column).

 92

You will see there is one SBATCH job ID when you issue, squeue -u [username] (Figure

32). Check this job using the following code,

sacct -j [jobID] --format=jobid,jobname,start,end,state # The sacct

command is used to display information about jobs and job steps (Figure 32). The

different values for the --format option are separated by a comma without space

between values. The available values for the --format option can be found using

sacct --helpformat, which returns a list of the format values. Please note that --

helpformat here is one word without space in between. The job ID option -j carries

a value of the job number.

From the output of the above code, you will see each job step has its own ID, and that

each job step starts at the same time (the Start column of the output table) (Figure 32).

Therefore, counting of the 7 samples is conducted simultaneously, and the SBATCH

job can be completed in much less time (around 84 minutes vs > 8 hours using the serial
counting). However, each job step (each sample) ends at different time (the End column

of Figure 32). The completion time of each sample is permanently recorded and can also

be found by listing all the count files after counting, ls -hl *.count.

7.4 Run parallel counting of samples by job array

Alternatively, we can use the --array flag to run parallel counting of all the samples of a

project. Prepare the following scripts in nano text editor with a file name of
count_array.slurm,

#!/bin/bash

HTSeq parallel counting using array

#SBATCH --job-name=HTSeqParallelCounting

#SBATCH --partition=express

#SBATCH --nodes=1

#SBATCH --ntasks=1

#SBATCH --cpus-per-task=7

#SBATCH --mem-per-cpu=1G

#SBATCH --time=2:00:00

#SBATCH --mail-type=FAIL

#SBATCH --mail-user=hukejin@gmail.com

#SBATCH --error=count.err

#SBATCH --out=count.out

#SBATCH --array=0-6

module load HTSeq

 93

FILE=("SRR10203569Aligned.sortedByCoord.bam"

"SRR10203570Aligned.sortedByCoord.bam"

"SRR10203571Aligned.sortedByCoord.bam"

"SRR10203572Aligned.sortedByCoord.bam"

“SRR10203573Aligned.sortedByCoord.bam”

“SRR10203574Aligned.sortedByCoord.bam”

“SRR10203575Aligned.sortedByCoord.bam”)

htseq-count -f bam -s no -c ${FILE[$SLURM_ARRAY_TASK_ID]}.count \

-r pos ${FILE[$SLURM_ARRAY_TASK_ID]} \

/data/user/kejinhu/RNA_seq_tutorial/humanGenomeIndex/\

Homo_sapiens.GRCh38.105.gtf

This code uses the --array flag to define the number of parallel jobs, and the FILE
bash variable to define the 7 samples. The SLURM_ARRAY_TASK_ID is used

to define each sample to be counted and saved.

Then, submit the file,

sbatch count_array.slurm

This array parallel counting and the above srun parallel counting used similar

amount of time to count the 7 samples.

7.5 Briefly review the counted results in the terminal

The above htseq-count command returns one .count file for each of the BAM file. Use

the head command to see the first 10 features of the count table (Figure 33),

head SRR10203569_Aligned.sortedByCoord.bam.count # Please note that

the count file names are shortened (re-named) in Figure 33 (see Chapter 8 below).

As you can see that the htseq-count command generates a 2-column table for each BAM

file. The first column is the ENSEMBL ID, and the second column is the read counts

uniquely mapped to a specific ENSEMBL ID (Figure 33).

Use the tail command to see the last 10 lines of a count file (Figure 33),

tail SRR10203569_Aligned.sortedByCoord.bam.count # Please note that the count

file names are shortened (re-named) in Figure 33 (see Chapter 8 below).

You can see that at the end of the table there are summary for other categories of read

counts, which include _no_feature, _ambiguous, _too_low_aQual, _not_aligned, and

 94

_alignment_not_unique (lower part of Figure 33). Please make sure that the read counts

for those categories are very low, and the majority of read counts are uniquely mapped
features.

You can check the entire count table using the less command,

less SRR10203569_Aligned.sortedByCoord.bam.count # After the less

command, you can use down- and up-arrow keys, or page-down and -up keys to

navigate down and up the table. Instead of the less command, you can also use the

cat command to see their contents of the count files.

You can find out how many row/transcripts in a specific or all the count files using the
wc (Word Count) command (Figure 33),

wc -l SRR10203569_Aligned.sortedByCoord.bam.count # This counts the

number of lines for this count file. The -l option means counting the lines in the table.

wc -l *.count # This counts number of lines for each of the count files in the same

directory. Usually, all count files have the same number of lines.

After you transfer these count files to your local device, you can open the table using

LibreOffice Calc (Linux) or Excel (MAC or Windows PC). If around 50% of your reads

are in the group of no_feature when you use the default value for the strandedness option
-s yes, your samples are likely prepared using the non-stranded library kit. The total

aligned read counts can be found in the _Log.final.out files. In this case, you need to

count again using the -s no option for the htseq-count command.

Figure 33. Management and review of the count tables.

Make a directory for the count files
Copy all count files into the directory of counts

Go to the counts directory
List the contents of the counts directory

Rename the count files
using the mv command and
the for loop to keep the unique
parts only in the file names

To see the new short file names

Count the total lines in a count file

To see the first 10 features of a count file

To see the last 10 lines of a count file.

These counts should be low.

A count table contains two columns:
First column, ENSEMBL Id
Second column, raw read counts

 95

Summary of Chapter 7

• This tutorial uses the htseq-count command to count reads to features.

• Counting of reads to features is very slow.

• We can use srun in a sbatch file to achieve parallel counting of multiple

samples and significantly shorten the machine time for counting.

• Bash job array can also be used to speed up counting by processing many

samples simultaneously.

 96

Chapter 8

Analyses for differential

expression using the

DESeq2 R package

 97

8.1 Preparation of count files on Linux HPC

Each command in this section takes no time and uses very little resources, and therefore

we may conduct such file-management work on the login node. But, it is better to start

a pseudo terminal using srun --pty bash even for this light job. Usually, I put all count

files in one directory called counts, using the cp (copy) command,

cd /data/user/kejinhu/RNA_seq_tutorial/fastq_files # This takes you to the

directory where the read count files are currently located.

mkdir counts # This makes a subdirectory of counts (Figure 33).

cp *.count counts # This copies all the count files into the directory of counts
(Figure 33).

Then, go into the counts directory,

cd counts

Within the counts directory, we remove the common part of the count file names, i.e.,

the “_Aligned.sortedByCoord.out.bam.count” part from all count files, but keep the

unique sample identity parts, using the following for loop in combination with the mv

(move) command (Figure 33),

for i in *_Aligned.sortedByCoord.out.bam.count; \

do mv $i ${i%_Aligned.sortedByCoord.out.bam.count}; done # The % sign here

means that the substring after it will be deleted from the variable (Figure 33).

Now, you can use the ls command to see the new file names in the counts directory

(Figure 33). As you can see, the above codes shorten the file names and generate 7 new

count file names of SRR10203569, SRR10203570, SRR10203571, SRR10203572,

SRR10203573, SRR10203574, SRR10203575 (Figure 33).

8.2 Request resources of RStudio server

Bring about the pulldown menu at the Cheaha Interactive Apps tab (Figure 2) on the

HPC web dashboard, then click the RStudio Server tab from the menu, and this gives

you the request form (Figure 34). Click the Launch button if you will not change any

parameters (using the default settings). You will see a queue window. After the

requested resource is granted, click the “ Connect to RStudio Server” button, and this
will take you to the RStudio platform.

 98

For the procedure below you can do all the analyses on RStudio of your desktop if you

do not have a HPC RStudio server. However, you need to install all the required R
packages on your local computer. Otherwise, the procedure is very similar. Installation

of R and RStudio is easy and straightforward, and you can seek for help from your

institution IT personnel. For the basics of R, readers can consult some introductory

books 8, 9, or my tutorials 6, 7. In those two tutorials I introduce some basic concepts and

commands related to preparation of heat maps and boxplots. In this tutorial below, I will
further introduce some basic as well as the RNA-seq related R commands.

8.3 General preparation in RStudio for DESeq analyses

On the RStudio console pane, you will see a prompt sign > (The prompt sign in Linux

is $, compare Figures 32 and 33 with 35). Type getwd(), and then hit the Enter key. You

will see your current working directory is your data home directory of your HPC account.

In my case, it is /home/kejinhu/ (Figure 35). As you can see here, unlike Linux an R

command (in R terminology, it is called function) uses parentheses to introduce its
arguments (Linux terminology is options). You should use the parentheses even though

no arguments are specified (i.e., default) as you can see here for getwd().

You may see some R objects listed on the Environment pane (upper right quadrant).
This is because RStudio will automatically load the workspace saved as a hidden

file, .RData in the home directory. Issue ls(), and you may see R objects you generated

previously. Please note the different formats of the list function of R ls(), and the list

command of Linux ls. If there is no any object, you will see “character(0)” on your

screen. If there is any object, you can find the .RData file in your home directory using
the list.files() function,

Figure 34. Request resources for RStudio server.

Select the RStudio Server

from the Interactive

Apps list

 99

list.files(all.files = TRUE) # If you do not use the all.files = TRUE argument, i.e.,

list.files(), the hidden file .RData will not show.

You can remove all the objects (not the files) using the following code,

rm(list=ls()) # This removes all the previous objects loaded onto the memory.

You can call ls() again, and you will see a return of “character(0)” in your console,

and the R objects will disappear from the “Environment” pane. You can also click

“clear workplace” under the Session sub-menu to remove all objects on the memory.

The command rm(list=ls() just removes all the objects on the memory, but does not

remove any files including the .RData file containing the objects. You can re-load this
file again manually using the load function load(),

load(“.RData”) # This re-loads the workplace. The file may have a specific name

with the extension of .RData if you specify it at the time of saving.

ls() # This prints on the screen the loaded R objects from the

memory.

rm(list=ls()) # Remove all the R objects on the memory again.

Now, set up your R working directory to the HPC directory that contains your RNA-seq

count data using the following code with the set working directory function setwd(),

setwd(“absolute_path_to_count_directory”) # In my case, the code is

setwd(“/data/user/kejinhu/RNA_seq_tutorial/fastq_files/counts”) (Figure 35). Please

note that you need to quote the path in the setwd() function. This will change your

RStudio working directory to the counts directory. You can confirm the new working

directory using the getwd() function.

getwd() # This prints out the path to your counts directory on your HPC. In

my case, it is /data/user/kejinhu/RNA_seq_tutorial/fastq_files/counts.

To see all the files in the working directory, issue,

list.files() # You will see a list of files on your screen. In this tutorial, you will see

the count file names, "SRR10203569" "SRR10203570" "SRR10203571"

"SRR10203572" "SRR10203573" "SRR10203574" "SRR10203575" (Figure 35). Make

sure all your count files are there. Please note that there is an “s” in the list.files()

function. You would see a warning if you missed it.

 100

8.4 Generate the DESeq2 R objects for DE analyses

DESeq2 needs several R objects for the analyses depending on the pipeline you will use.

For the htseq-count and DESeq2 pipeline, we need R objects of directory, sampleFiles,

sampleCondition, and sampleTable. The following procedures use the generic R

functions to generate the DESeq2 objects, but we do not need the DESeq2 package at

this point.

directory = getwd() # This generates the directory object for later use. Since we

have made the counts directory as the working directory, we can use the getwd()

function to assign elements to the directory object. We can also directly generate it

using this syntax, directory = “absolute path to the directory of your count files”. In

my case, it is, directory = "/data/user/kejinhu/RNA_seq_tutorial/fastq_files/counts".

Please note that you can use either = or <- assign operators. You can issue directory

after the object is generated, and you can see the contents of the directory object,

Figure 35. Prepare DESeq2 R objects in RStudio. The screenshot here mainly captured the

Console pane and the other three panes (Plots/Files/Packages/Help pane, Source editor pane,

and Workspace Browser/History pane) were largely avoided. Red texts are illustraions added

by the author. The magenta texts illustrate the RStudio pane components. The Console pane

can be minimized or maximized using the pane icons on the top right; the Console pane can

be changed into a Linux terminal using the tab on the top left of the pane (shaded in red). On

the Linux terminal pane, you can manipulate your files on the HPC using the bash commands.

Find out the working directory

Set the counts directory
as the working directory# List the path to the working directory

List the files in the working directory

Define the directory object

Define the sampleFile object

Define the sampleCondition object

Define the
sampleTable

data frame object

Print out the data frame of sampleTable

Save the workplace
on home directory

Print the sampleCondition vector

C
o

n
s
o

le

p
a

n
e

 (
a

c
ti

v
e

)

F
il
e

s
 p

a
n

e

Linux terminal switch
Minimizing &
maximizing
buttons

H
is

to
r
y

p
a

n
e

Clear
console
button

 101

in the current case, "/data/user/kejinhu/RNA_seq_tutorial/fastq_files/counts" (Figure

35)

directory # This outputs the content of the object directory you just generated.

sampleFiles <- list.files() # The sampleFiles object can be generated in several

ways. You can use: sampleFiles <- list.files(directory), or use the

combine/concatenate c() R function, sampleFiles <- c(“file1”, “file2”, “file3”,,

“fileN”). Please note that if there are other files in the same directory, you cannot use

list.files() or list.files(directory) because these will include other non-target files as

well. However, you can generate an R vector containing the names of all the files in

the working directory using the list.files() function first, and then remove the

unwanted elements using the index operator [], sampleFiles <- sampleFiles[-c(n1,

n2)]. Here, -n1 and -n2 are the indices (position) of the unwanted elements of the

sampleFiles vector, and the minus sign – here means to remove these files.

Let us simply generate the sampleFiles object using the R generic combine c() function,

sampleFiles # This prints the content of the object sampleFiles.

rm(sampleFiles) # This removes the sampleFiles object.

sampleFiles # You will see a warning of “Error: object 'sampleFiles' not

found” because you just removed it.

sampleFiles <- c("SRR10203569", "SRR10203570", "SRR10203571", "SRR10203572",

"SRR10203573", "SRR10203574", "SRR10203575") # This generates the

sampleFiles object using the combine c() function.

sampleFiles # You will see you have just generated the same sampleFils object

as does sampleFiles <- list.files().

sampleConditon <- c(rep(“BJ”, 4), rep(“ESC”, 3)) # Here, we use the

c() function and rep() function to generate the sampleCondition object (a vector

object). For a two-condition experiment, the syntax is sampleCondition <-

c(rep(“treatment”, #_of_repeats), rep(“control”, #_of_repeats)). Use the help()

function to find out information about the R functions of c() and rep(), i.e., help(c)

and help(rep).

sampleTable <- data.frame(sampleName = sampleFiles, fileName = sampleFiles,

condition = sampleCondition) # Here, we use the data.frame() function to

generate the sampleTable object (a data frame object). For more information about

 102

the data.frame() function, you can call help(data.frame) on the RStudio console pane

and see the help information on the Help pane. The resulting column names may

not be sampleName, and it can be sampleNames; and fileName could be fileNames.

After generating the sampleTable data frame object, call the object sampleTable

to print out the data frame on the screen and check if the sample names, sample

files, and conditions match each other.

sampleTable

To see the basic features about the sampleTable object, use the summary() function

(Figure 36),

summary(sampleTable)

Next, we categorize the condition vector of the sampleTable data frame as two-level
factors using the factor() R function (Figure 36),

sampleTable$condition <- factor(sampleTable$condition) # Here, we use the

$ operator to select the condition column of the data frame of sampleTable. For use

of the factor() function, you can issue help(factor) in your RStudio console pane and

the help page for the factor() function will appear in the Help pane.

Use the summary() function again, and you will see that the condition column is

categorized as a vector of factors,

After
categorization

Before
categorization

Figure 36. Screenshot for categorization of the condition variables in the sampleTable

data frame. Here, condition has two levels.

 103

summary(sampleTable)

Your RStudio consoles screen may be cluttered with the codes and outputs. You can
clear the console screen by clicking the “Clear Console” icon (upper right in Figure 35)

or just use the key combination of ^+L (press Control and L together). This just clears

the displays on the console screen and has no impact on the objects on the memory nor

the function history.

8.5 Load DESeq2 package and get online help with DESeq2

When the objects directory, sampleFiles, sampleCondition, and sampleTable are defined,

you can work under any other directory since the objects are on the memory and the

paths to the files are defined already, but for convenience we will stay in the same

directory. Now, we need the R package DESeq2 and its related packages. Please note

that instructions about installation of R packages are not included in this tutorial. Load
the DESeq2 library/package using the R function of library(),

library(DESeq2) # When you load the DESeq2 library, R automatically loads

the required packages for DESeq2 including S4Vectors, stats4, BiocGenerics, parallel,

Biobase, and MatrixGenerics. These packages contain many objects with the same

names as in the R base packages. Therefore, you may see warning for masking those

objects. Do not worry about those warnings.

You can find the original article about DESeq2 using the citation() function,

citation(“DESeq2”) # Please note that you should quote DESeq2 in

this code.

You can find out the version of your DESeq2 using the packageVersion() R function,

packageVersion(“DESeq2”)

Or
package.version(“DESeq2”)

For help with DESeq2, issue the following code,

help(DESeq) # Please note that there are no quotation marks around

DESeq becuae DESeq() is an R function as defined in the DESeq2 package, and there

is no “2” because the function name is DESeq() not DESeq2(). This is similar to display

help documents of other R functions such as c() and factor(), you issue help(c) or

help(“c”) and help(factor) or help(“factor”) with and without quotation marks around

the function name in query. This will give you documentation about the function

DESeq() in the “Help” pane of RStudio. Unlike the help(“DESeq2-package”)

 104

introduced below, this call gives help documentation for the function of DESeq() only,

but not other functions in the DESeq2 package.

If you want to get help about the DESeq2 package, using,

help(“DESeq2-package”) # You will see a waring of “No documentation for

‘DESeq2’ in specified packages and libraries” when you use help(DESeq2) or

help(“DESeq2”). You will also have issues when you do not quote DESeq2-package

here. You need to use help(“DESeq2-package”). When you run this help, you will

see brief information about the package DESeq2. There is a list of the main DESeq2

functions including DESeqDataSet(), DESeq(), lfsShrink(), and vst(). You can further

run the ? or help() functions to find out information about these DESeq2 functions,

e.g., help(DESeqDataSet).

However, you can find function help for the DESeq2-associated functions, for

examples,

?DESeq2::counts # Interestingly, you cannot use help(DESeq2::counts), or

help(“DESeq2::counts”). Please note that you need to use double colon sign

between DESeq2 and counts.

?DESeq2::results # Interestingly, you cannot use help(DESeq2::results), or

help(“DESeq2::results”).

8.6 Conduct analyses with DESeq2

8.6.1 Prepare the raw DESeq data set (dds)

First, we need to generate the DESeq data set (dds) for analyses. The codes for dds

generation vary depending on how you prepare the RNA-seq count tables in the previous

step. We have used the htseq-count command to generate the count tables, and we
therefore use the function DESeqDataSetFromHTSeqCount() to generate the DESeq

data set (dds) (Figure 37),

ddsHTSeq <- DESeqDataSetFromHTSeqCount(sampleTable = sampleTable,

directory = directory, design = ~ condition)

You can retrieve the online help pages for the DESeqDataSetFromHTSeqCount() R
function defined by DESeq2,

help(DESseqDataSetFromHTSeqCount)

Check the DESeqDataSet object ddsHTSeq (Figure 37),

 105

ddsHTSeq # You will see a summary of the results including dimension, column

names, and some row names.

At this point, you have a DESeqDataSet raw data. The count matrix of this dataset

contains a lot of rows, and you can find the numbers of rows by calling the R function

number of row nrow() (Figure 37),

nrow(ddsHTSeq) # This prints out the total number of rows of the count matrix.

You can find out the number of columns using the number of column R function

ncol(), i.e., ncol(ddsHTSeq). You can find out the numbers of columns and rows at

one time by calling the dimension function dim(), i.e., dim(ddsHTSeq). Use the

colnames() function to print out the list of the column names, colnames(ddsHTSeq).

There are a lot of genes that are not expressed in any of the samples in your experiments.

We can find out how many of these genes using the code below,

nrow(ddsHTSeq[rowSums(counts(ddsHTSeq)) < 1 ,]) # This outputs the number

of genes/transcripts whose total read counts in all samples are 0. This code uses a

combination of R functions rowSums(), counts(), nrow(), and the indexing operator

[]. The comma in this code means all columns in the tables will be kept. Use of R

function combination here is similar to the pipe operator | in Linux in that you use

the output of one command as input of another command.

You may want to reduce the matrix table given that a lot of rows have a total read counts

of zero or only one read for all the samples in the same row (a gene or a transcript). We

are not interested in those genes without expression in both conditions. The following

code removes all rows in which the total read counts for all samples are equal or less

than 1 (Figure 37),

ddsHTSeq_noZero <- ddsHTseq[rowSums(counts(ddsHTSeq)) > 1 ,] #

This generates a smaller ddsHTSeq data set, containing rows with the corresponding

total read counts for all samples greater than 1. Check the row and column numbers

again by calling, dim(ddsHTSeq_noZero). You will see that the number of rows has

been reduced significantly, but all the 7 columns are retained in the new ddsHTSeq

data set (Figure 37).

8.6.2 Set up the reference level and run the DESeq() function

When conducting the differential expression analyses, you need one condition to be the

reference, and this usually is the control condition. DESeq() will automatically choose

the reference level alphabetically. You can define the reference level using the relevel()
function and the ref argument.

 106

ddsHTSeq_noZero$condition <- relevel(ddsHTSeq_noZero$condition, ref = “BJ”)

 # Here, we use the human fibroblasts BJ cells as the reference. One usually

uses the control as reference. The syntax is: ddsHTSeq$condition <-

relevel(ddsHTSeq$condition, ref = “control”).

Then you can call the DESeq() command to generate the dds object,

dds <- DESeq(ddsHTSeq_noZero) # When you run this code you will see

the message coming out one by one on your console screen,

 estimating size factors

 estimating dispersions

 gene-wise dispersion estimates

 mean-dispersion relationship

 final dispersion estimates

 fitting model and testing

When done, you can call,

resultsNames(dds) # This returns the names of the estimated effects

(coefficients) of the model.

Minimized Source editor pane

total number of features after filering out the genes with no expression
Find out the number of rows/features in the ddsHTSeq_noZero object

Remove genes with no experssion

Total rows/features in the ddsHTSeq object

Find out the number of rows/features in the ddsHTSeq object

Generate the ddsHTSeq R object using the DESeq2 function of

DESeqDataSetFromHTSeqCount()

Console
 p

ane

Files
pane

Working directory Clearing tab

Tabs for pane re-sizing

W
o

r
k

s
p

a
c

e
B

ro
s
w

e
r

p
a

n
e

Figure 37. Screenshot of RStudio pane for defining the ddsHTSeq object. It captured

mainly the console pane with partials of the other three RStudio panes. Red texts are

illustration by the author. R scripts/codes are in blue.

 107

8.6.3 Extract results using the results() function

res <- results(dds) # This generates a result table (stored in the result object res)

with 6 columns: baseMean, log2FoldChange, lfcSE, stat, pvalue and padj, but does

not include the read counts of each sample. You will use the counts() function to

generate the count table (see below).

If your conditions have more than 2 levels, you may need to use the contrast argument

to conduct pair-wise comparisons,

res_treat2_vs_control <- results(dds, contrast = c(“condition”, “treat2”, “control”))

 # This will extract a result table for the comparison between

treatment 2 and the control, and store the results in the R object of

res_treat2_vs_control. You can give any name for the result R object, but an

informative name will be helpful.

8.6.4 Briefly review the results

You can use the summary() function to see the summary of the results,

summary(res) # Or, you call summary(res_treat2_vs_control).

The above code returns a summary of the results. The outputs may look like this,

out of 36445 with nonzero total read count

adjusted p-value < 0.1

LFC > 0 (up): 8323, 23%

LFC < 0 (down): 6941, 19%

outliers [1]: 32, 0.088%

low counts [2]: 7773, 21%

(mean count < 1)

[1] see 'cooksCutoff' argument of ?results

[2] see 'independentFiltering' argument of ?results

You can print the content of the res object on your screen simply calling the object name,

res

Simply issue the res object as above will print out the abridged table with the head

information similar to,

log2 fold change (MLE): condition ESC vs BJ

 108

Wald test p-value: condition ESC vs BJ

DataFrame with 36445 rows and 6 columns

 baseMean log2FoldChange lfcSE stat pvalue padj

 <numeric> <numeric> <numeric> <numeric> <numeric> <numeric>

ENSG00000000003 1598.7341 1.329407 0.239609 5.54824 2.88567e-08 1.68287e-07

ENSG00000000005 31.5038 8.657379 1.149997 7.52818 5.14537e-14 5.25172e-13

ENSG00000000419 1435.7501 0.879933 0.290701 3.02694 2.47045e-03 6.67570e-03

ENSG00000000457 298.9891 -0.929369 0.295471 -3.14538 1.65874e-03 4.65110e-03

ENSG00000000460 430.9958 2.208751 0.354075 6.23809 4.42942e-10 3.16513e-09

...

ENSG00000289640 0.308377 1.95779 3.76297 0.520279 6.02869e-01 NA

ENSG00000289641 0.236623 1.69298 3.78028 0.447845 6.54265e-01 NA

ENSG00000289642 1.037582 -3.35650 2.37325 -1.414303 1.57273e-01 2.44347e-01

ENSG00000289643 128.914189 10.69002 1.14804 9.311529 1.26005e-20 2.10671e-19

ENSG00000289644 0.387676 2.26137 3.73836 0.604909 5.45239e-01 NA

When we use summary(res), statistic numbers for DE genes at the p<0.1 level are

provided as above. We can find out how many genes/transcripts are differentially

expressed at the padj<0.05 level (or at other levels) using a code (or similar) below,

sum(res$padj < 0.05, na.rm = TRUE) # Please note that there are a lot of

NA in the columns of pvalue and padj (see the output above). You will see a message

of “NA” if you do not remove NA in your call as in this code: sum(res$padj < 0.05).

You can find out how many NA in the padj columns: table(is.na(res$padj)), which

gives a table listing number of the TRUE and FALSE events. Or, you just use

sum(is.na(res$padj)) to print out the total number of NA. You can also find out how

many rows in the padj columns of the res data frame are non-NA using this code,

sum(!is.na(res$padj)).

Or, you can make the following call,

table(res$padj < 0.05) # This generates a small table tabulating the number

of TRUE and FALSE for the two categories.

You can see the first 6 rows/genes of your results table using the head() R function,

head(res) # Or, you can see the specified number of rows via the n argument,

for example, head(n=10, res). This will give you a sense about differences in using

the head command of Linux and the R head() function.

8.6.5 Generate a table containing both statistics and counts

The results() function generates a table of 6 columns containing the statistical data only

without the read count data. The read count table can be extracted using the function of

counts(),

 109

count_table <- counts(dds, normalized = TRUE)

To see the first 6 rows/transcripts of the count table, issue,

head(count_table) # An example of the output is shown in Figure 38.

The two tables can be combined using the cbind() R function,

res_count <- cbind(res, count_table) # Or, you can generate the res_count table

at one step combining the functions, res_count <- cbind(results(dds), counts(dds,

normalized = TRUE)). The resulting table may look like the one in Figure 39.

The above res_count table is an S4 object. You can also use the merge() function to
generate the data frame object of res_count table in combination with the R function of

as.data.frame(),

res_count <- merge(as.data.frame(res), as.data.frame(counts(dds, normalized =

TRUE)), by = “row.names”, sort = FALSE) # This generates a list mode,

data frame class of data. Check using mode(res_count), class(res_count). If you use

the summary() function for res, count results (count_table), and the merged data

frame (res_count), you will see the differences of the data format. When practice

using this tutorial, please do not copy the code from the tutorial into the RStudio

because the text code may mess up your R code. For example, the double quotation

marks in your Word text or PDF text may function differently in R.

To see the first 3 rows/transcripts in the res_count table, issue,

head(n=3, res_count) # See Figure 39 for the output.

8.6.6 DE analyses for a sample set with multiple levels

In the case, you use the contrast argument to test just some of the samples (one of the
treatments vs controls), and you do not want to extract other samples that are not tested

for DE, you can use the following code,

 SRR10203569 SRR10203570 SRR10203571 SRR10203572 SRR10203573 SRR10203574 SRR10203575

ENSG00000000003 943.9131516 1081.681813 926.154233 928.446940 2328.75172 1936.248567 3045.9425136

ENSG00000000005 0.0000000 0.000000 0.000000 0.000000 103.40512 74.627660 42.4940651

ENSG00000000419 1073.8261263 1094.350159 755.008137 1299.561577 2052.71987 2328.383000 1446.4017622

ENSG00000000457 437.8884880 446.315559 329.190099 289.231692 213.64695 146.541587 230.1093713

ENSG00000000460 177.1540564 149.096682 110.548914 240.366064 758.01937 556.315286 1025.4699855

ENSG00000000938 0.9084823 2.923464 2.456643 2.641385 7.69129 8.141199 0.8017748

Figure 38. The first 6 features in a count table.

 110

res_count <- merge(as.data.frame(res_T1_vs_C), as.data.frame(counts(dds,

normalized = TRUE))[, c(“T1-1”, “T1-2”, “T1-3”, “C1”, “C2’, “C3”)], by = “row.names”,

sort = FALSE) # This code uses the indexing operator [] to extract the

normalized read counts for all three repeats of treatment 1 and that of the three

repeats of control RNA-seq. The comma here indicates that we keep all the rows in

the resulting table. In this case, we avoid cluttering of the table with columns of read

counts for other conditions not analyzed. T here denotes “treatment”, and C denotes

“control”. T1-1 to T1-3, and C1 to C3 are the column names.

 In the above code, you need to calculate the pair results first (T1 vs C). Of cause, you

can do this in one step as below,

res_count <- merge(as.data.frame(results(dds, contrast = c(“condition”, “T1”, “C”)),

as.data.frame(counts(dds, normalized = TRUE))[, c(“T1-1”, “T1-2”, “T1-3”, “C1”, “C2’,

“C3”)], by = “row.names”, sort = FALSE) # In this code, to include the

normalized read counts for the selected conditions you just specify the column

names of the count table.

Figure 39. The first three features of the res-count table, an output of

command, head(n=3, res_count).

 Row.names baseMean log2FoldChange lfcSE stat pvalue padj

1 ENSG00000000003 1598.73413 1.3294072 0.2396090 5.548236 2.885669e-08 1.682866e-07

2 ENSG00000000005 31.50384 8.6573786 1.1499967 7.528177 5.145367e-14 5.251722e-13

3 ENSG00000000419 1435.75009 0.8799327 0.2907006 3.026938 2.470449e-03 6.675701e-03

 SRR10203569 SRR10203570 SRR10203571 SRR10203572 SRR10203573 SRR10203574 SRR10203575

1 943.9132 1081.682 926.1542 928.4469 2328.7517 1936.24857 3045.94251

2 0.0000 0.000 0.0000 0.0000 103.4051 74.62766 42.49407

3 1073.8261 1094.350 755.0081 1299.5616 2052.7199 2328.38300 1446.40176

 111

Summary of Chapter 8

• This tutorial uses DESeq2 to conduct statistical analyses.

• The entire process of DE analyses can be conducted on RStudio, and HPC may
not be needed. You can conduct this step on a desktop.

• The genes/rows that are not expressed in all samples can be removed before

analyses.

• The result R object is generated using the DESeq2 result() function.

• The count table is generated using the DESeq2 counts() function.

• The count and statistical results can be combined using the R cbind() or merge()
functions.

 112

Chapter 9

Annotation and management of the

result data frame

 113

At this point, you have a table containing both statistical data and the normalized read

counts for each sample (see Figure 39), but there are ENSEMBL ID (The row.names
column in Figure 39) only without other information of the transcripts/genes. The tables

a bioinformatician gives you include annotation information such as gene names and

gene symbols. We need at least the gene symbols for the downstream analyses.

9.1 Convert the S4 object of the DESeq results into data frame

If you use the merge() function to generate the res_count table you can skip this step. If
you use the cbind() function to produce the res_count table, you need some manipulation

of the table before annotation.

The resulting tables for the DESeq() and results() functions have row names of the

ENSEMBL IDs. The data set generated using the cbind() function is an S4 class object
and also has row names of ENSEMBL IDs. In the annotation table, the ENSEMBL IDs

constitutes a column. Before we proceed, we need to make the row names the first

column of the data table. We need the R package tibble for this purpose since it has

functions to manipulate row names.

Load the tibble library,

library(tibble)

Check if the results table has row names using the tibble function has_rownames(),

has_rownams(results(dds))

has_rownames(counts(dds, normalized = TRUE))

has_rownames(cbind(results(dds), counts(dds, normalized=TRUE)))

The results for the above test are FALSE, but if you check using the head() function

you will know these tables have row names, which are the ENSEMBL ID.

head(results(dds))

head(counts(dds, normalized = TRUE))

head(cbind(results(dds), counts(dds, normalized=TRUE)))

We change the row names as the first column,

res_count <- as.data.frame(cbind(results(dds), counts(dds, normalized=TRUE)))

 114

res_count <- rownames_to_column(res_count, var = “ENSEMBL”) #

This code also gives the column name of “ENSEMBL” to the new column

manipulated using the var argument. You can also just change the row names to a

column for res or count individual objects. You need to make it a data frame first

before using the function of rownames_to_column(), i.e. count <-

as.data.frame(count).

Now, you can check if the first column contains the ENSEMBL IDs using

head(res_count).

9.2 Add annotations to the table

Here, we use the organism-level annotation R packages. For human, the annotation

package is org.Hs.eg.db. You may need to install the packages by yourself if the
packages have not been installed by your HPC team.

Load the package,

library(AnnotationDbi)

library(“org.Hs.eg.db”) # You may see a message of: “Loading required

packaged: AnnotationDbi” if you do not load AnnotationDbi first. Therefore, you can

just load the library of “org.Hs.eg.db” only because it will automatically load the

associated AnnotationDbi package. Please note that the quotation marks are not

necessary. Note also that the H is in uppercase in the package name of org.Hs.eg.db.

Otherwise, you will get a warning.

We can check how many columns of annotations we could choose from using the

columns() function,

columns(org.Hs.eg.db)

We can also find out what kind of key types we can use for annotation (usually,

ENSEMBL id) using the keytypes() function,

keytypes(org.Hs.eg.db)

We use the select() function to build up the annotation data.frame,

anno <- AnnotationDbi::select(org.Hs.eg.db, keys = res_count$ENSEMBL, keytype

= “ENSEMBL”, columns = c(“GENENAME”, “SYMBOL”)) # Please note that

both “GENENAME” and “SYMBOL” are in singular forms. If you use “GENENAMES”

 115

or “SYMBOLS”, you will see a warning. Please note that the argument “keys” is in the

plural form, not singular form; so is the “columns” argument; but the “keytype”

argument is singular. Those make sense because you use one type of keys, but there

are many keys of the selected key type; and most of the time you add >=2 columns.

It will not work if you have any issue in spelling.

Now, check the dimension of the anno data frame object,

dim(anno)

dim(res_count)

You will find that the number of rows of the two objects are different. This is because

one ENSEMBL Id may match multiple GENENAME and SYMBOL. We can remove

the duplicates using the function duplicated(), and get the anno data frame without
duplicated ENSEMBL Id using the following modified code. The code below use both

the pipe operator, i.e., %>%, and the filter() function, both of which need the dplyr R

package,

library(dplyr) # This loads the dplyr package.

anno <- AnnotationDbi::select(org.Hs.eg.db, keys =

count_statistic_dataframe$ENSEMBL, keytype = “ENSEMBL”, columns =

c(“GENENAME”, “SYMBOL”)) %>% filter(!duplicated(ENSEMBL)) # Because

both dplyr and AnnotationDbi packages use the function name of select(), we use

AnnotationDbi::select() to avoid confusion. You may use select() if you do not load

the package of dplyr. Please note that there are no quotation marks around

ENSEMBL in the duplicated(ENSEMBL) function, and in

count_statistic_dataframe$ENSEMBL. The count_statistic_dataframe is the res_count

data frame. Please also note that it is “duplicated” not “duplicate”.

Please note you can remove the duplicated ENSEMBL entries in a generated anno
data.frame as,

anno <- filter(anno, !duplicated(ENSEMBL)) # For the usage of filter(), refer to the

help information for the filter() R function.

To see the first 6 rows of the anno object,

head(anno)

The output of the above code may look like,

 116

ENSEMBL GENENAME SYMBOL

1 ENSG00000000003 tetraspanin 6 TSPAN6

2 ENSG00000000005 tenomodulin TNMD

3 ENSG00000000419 dolichyl-phosphate mannosyltransferase subunit 1, catalytic DPM1

4 ENSG00000000457 SCY1 like pseudokinase 3 SCYL3

5 ENSG00000000460 chromosome 1 open reading frame 112 C1orf112

6 ENSG00000000938 FGR proto-oncogene, Src family tyrosine kinase FGR

Now, check the dimension of the two objects again and you will find they have the
same numbers of rows,

dim(anno)

dim(res_count)

Now, use the left_join() function to combine the annotations into the results data

frame,

res_count__anno <- left_join(res_count, anno, by = “ENSEMBL”) # please

note that it is an underscore, not a dot between “left” and “join” in the function of

left_join(). Please also note that the column name for the ENSEMBL Id column should

be “ENSEMBL” here. Otherwise, you will see a warning: “Error: Join columns must be

present in data. x Problem with `ENSEMBL`. You need to change the name to

“ENSEMBL” first. The by argument may be omitted if both data sets have the same

column names of “ENSEMBL” and this is the only column that has the same column

name in both tables. When the column names for the two tables are different for

their ENSEMBL columns, we can define both names as identical using the by

argument: by =c(“Row.names” = “ENSEMBL”). Please note that when you define the

two column names as the same, you need to place the two columns names in the

same order as the two data frames are presented within the left_join() function. The

combined table will take the first column name in the by argument as the column

name of the new table.

Please note that the order of the two table objects (res_count and anno) will define the
order of columns in the newly combined table generated. You can put whichever table

first as you prefer. You may use the function of right_join() since the row are the same

for the two tables. Please note that the different *_join() functions are ones from the

package dplyr, but merge() is a base R function.

Check the first several rows of the combined table using the head() function,

head(res_count_anno)

You can briefly see the list of column names by issuing,

 117

colnames(res_count_anno) # Or, you simply use the command

names(res_count_anno) to get the same output. The colnames() and names()

functions are the same.

9.3 Review the data frames (tables) on RStudio

You can bring about the tables using the function of View(),

View(res_count) # Please note that unlike other R functions the “V” in the

View() function is in uppercase.

View(res_count_anno)

The tables (res_count, or res_count_anno) will appear in the source editor pane. Or, you

just simply click on the object name in the workspace browser pane to achieve the same

as the View() function does.

 118

Summary of Chapter 9

• The result and count table has no annotation to each row, and annotation should

be made for further downstream analyses.

• We use the R packages of AnnotationDbi and org.Hs.eg.db for annotation of

human RNA-seq results.

• We use the AnnotationDbi::select() function to generate the anno object.

• We use the filter() and duplicated() functions to remove the duplicated rows in

the anno object. The filter() function needs the dplyr package.

• We combine the result/count table with the anno table using the left_join()

function.

 119

Chapter 10

Work on the result data frame

 120

Now, we have a result table similar to what you receive from a bioinformatician. You

may want to manipulate your DE results such as sorting and extraction. Some of those
manipulations can be easily done in Excel. However, R is more powerful and faster for

some tasks. Here, I will show you some basic manipulation of the result table.

10.1 Remove rows/genes that are not expressed in all samples (both treated

and untreated)

As you remember, we have removed genes before calling DESeq() for which the total

read counts for all samples are less than or just 1. We may, however, have to use a higher

threshold for the expressed genes, and can further reduce the size of the tables. We will

use the subset() function to do this.

res_count_anno_expressed <- subset(res_count_anno, (NameOfcount_column1 +

NameOfcount_column2 + ... + NameOfcount_columnN) > 50,

names(res_count_anno))

This code will generate a much small data frame that lacks the genes whose total

normalized read counts of all samples are less than 50. Here, you use column names (not
position of the columns) to calculate the total reads. The column names can be found

using the function of names() as introduced previously. Please note that there are no

quotation marks around each column name. The following code extract expressed genes

for the RNA-seq samples in this tutorial with the higher threshold,

res_count_anno_expressed <- subset(res_count_anno, (SRR10203569 + SRR10203

570 + SRR10203571 + SRR10203572 + SRR10203573 + SRR10203574 + SRR10203

575) > 50, names(res_count_anno))

10.2 Keep the genes/transcripts whose padj are < 0.05

res_count_anno_expressed_Q005 <- subset(res_count_anno_expressed, padj <

0.05, names(res_count_anno_expressed)) # This will generate a data frame

that contains genes whose padj is less than 0.05. padj is the column name for the

adjusted p values.

10.3 Keep the genes/transcripts/rows that are upregulated by 1.2 fold

up1dot2 <- subset(res_count_anno_expressed_Q005, log2FoldChange > log2(1.2),

names(res_count_anno_expressed_Q005)) # log2FoldChange is the column

name of the log2 fold change.

 121

Similarly, you can keep the genes/transcripts/rows that are downregulated by 1.2 fold

simply using the negative sign,

down1dot2 <- subset(res_count_expressed_anno_Q005, log2FoldChange < -

log2(1.2), names(res_count_anno_expressed_Q005))

10.4 Keep genes that meet multiple conditions

You can use & to subset on two or more criteria, for example, log2FoldChange and
mean values at once. The logic operator & means both conditions should be met. For

samples in this tutorial, the code below simultaneously select genes/rows that are

downregulated at 1.2 fold at the padj < 0.05 level (meeting two conditions),

up1dot2_significant <- subset(res_count_anno_expressed, log2FoldChange >

log2(1.2) & padj < 0.05, names(res_count_anno_expressed)) # log2FoldChange is

the column name of the log2 fold change.

10.5 To extract all the RNA-seq data (all columns) for a list of genes

Sometimes you are interested in a list of genes and want to extract data for that set of

genes from your result data frame. When your gene list is long, this is difficult to do
with Excel, but it is easy in R. You can use the subset() function to achieve this as

follows,

data4selectedGene <- subset(sourceRNAseqDataTable, ColumnNameOfGeneID %in%

vectorObjectName4GeneList, names(sourceRNAseqDataTable))

ColumnNameOfGeneID should be the name of the gene ID column, which could be

ENSEMBL, or SYMBOL. vectorObjectName4GeneList is the object name, which

define the list of genes of your interest. You need to make this vector object first. The

type of gene IDs should match that in the gene ID column (ENSEML or SYMBOL) of

your result table/data frame. You need the R package dplyr to use the operator of %in%.

10.6 Save and re-load the entire workspace

You can save your workspace in the working directory (by default) by choosing “Save
Workspace As” under the Session pulldown menu of RStudio. If you want to save the

workspace on the home directory, you can go to the home directory first using,

setwd(“~/”)

 122

You can also use the save() function to save your workspace as a file. When using the

save() function, please use the file extension name .Rdata, and use a code like this,

 save(list=ls(), file = “myworkspace.Rdata”) # You need to specify the

object to be saved, otherwise you will have a warning of “Warning message: In

save(file = "test.Rdata") : nothing specified to be save()d. The list=ls() command

defines that all the objects in the current workspace will be saved with a file name of

“myworkspace.Rdata” in the current directory.

However, if you use the function of save.image(), you do not need to provide the objects,

save.image(file = “myworkspace.RData”) # save.image() is just a

short-cut for ‘save my current workspace’. You can simply use:

save.image(“myworkspace.RData”), omitting the “file =”.

You can save the workspace in a specific directory by giving the path. For example,

save.image(file =

"/data/user/kejinhu/RNA_seq_tutorial/fastq_files/counts/RNA_seq_tutorial.RData")

You can also save the workspace at any step of your analyses, and come back to work

on it later. After you save your workspace, you can quit RStudio using,

q() # I am sorrty that this function should be introduced earlier for audience

who has no prior R experience.

When you come back to work on your workspace, you can load the workspace by

clicking the “Load Workspace” button on the Session pulldown menu. Alternatively, as

introduced at the beginning of Chapter 8 you can use the load() function in the working

directory which contains your file of workspace.

load(“RNA_Seq_tutorial.RData”)

When your workspace file is not in the working directory, you can load it by providing
the path to it. For example,

load("/data/user/kejinhu/RNA_seq_tutorial/fastq_files/counts/RNA_seq_tutorial.RDa

ta")

10.7 Save the DE results as a csv file

You can use the write.csv() function to save individual DE result table in the csv

(comma separated values) format in the working directory,

 123

write.csv(res_count_anno, file = “file_name_of_your_choice.csv”, row.names = FALSE)

 # Please do not forget the file extension of .csv.

If you want to save the file in a directory that is not the current working directory, you

can provide the path,

write.csv(res_count_anno, file =

"/data/user/kejinhu/RNA_seq_tutorial/fastq_files/counts/res_count_anno.csv",

row.names = FALSE)

Use the list.files() function to see if the file is saved in the working directory,

list.files()

Of course, you can list the files of any directory from the working directory just by

providing the path,

list.files("/data/user/kejinhu/RNA_seq_tutorial/fastq_files/counts/")

Finally, transfer data from HPC to local computer using Globus, or FileZilla as
introduced in Chapter 2.

Now, you quit RStudio using q(). Please note that you quite Linux terminal using exit.

 124

Summary of Chapter 10

• You can save the R workspace at any steps of your DE analysis stage using the

save() or save.image() functions, or simply save via the graphic menu/tabs on

RStudio.

• The workspace can be re-loaded at a later time using the load() function to

continue the unfinished job.

• The DE results should be saved onto your HPC as CSV files so that you can

further analyze the DE results on your desktop. You can use the write.csv()

function to save the file.

• You can sort or subset your DE results in RStudio more efficiently than in Excel.

 125

Appendix

Software/packages used in this tutorial and their websites

SRA-Toolkit

A set of tools for management of Sequence Read Archive (SRA). for more information,

visit https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=toolkit_doc.

FastQC

FastQC can QC RNA-seq raw data for individual files. Website,

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/.

MultiQC

A tool for aggregating results of bioinfromatics based on the log files across many

samples into an integrated single report. Visit, https://multiqc.info/.

nano text editor
A text editor preinstalled on many Linux distributions. It is even installed on Mac OS.

The nano text editor is a simple Linux text editor and can be used to view, prepare, or

edit text files, and scripts. There is a list of key combinations right in the bottom of the

editor. The most useful key combination may be: CTRL+G (online help), CTRL+O
(save), CTRL+X (exit), CTRL+A (to the beginning of the current line), CTRL+E (to the

end of the current line), ALT+/ (to the last line of the text/file), and ALT+\ (to the first

line of the text/file). Visit https://www.nano-editor.org/.

SLURM
A popular job scheduler for HPC. For detailed information (tutorial, documentations,

FAQ, publications, and others), visit https://slurm.schedmd.com/ .

IGV

A tool for visualization of alignment results,
https://software.broadinstitute.org/software/igv/

Filezilla

A platform for data transfer to and from HPC, https://filezilla-project.org/ .

Globus

A tool for data transfer to and from HPC, https://www.globus.org/

Open OnDemand

https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=toolkit_doc
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://multiqc.info/
https://www.nano-editor.org/
https://slurm.schedmd.com/
https://software.broadinstitute.org/software/igv/
https://filezilla-project.org/
https://www.globus.org/

 126

A web-based interface to HPC developed by Ohio Supercomputer Center (OSC,

https://www.osc.edu/resources/online_portals/ondemand). Open OnDemand webinar:
https://www.youtube.com/watch?v=OxNBSk5_sTw.

Tools for data transfer to and from HPC

o SRA-Toolkit

o Filezilla

o Globus

o wget
o rclone

o rsync

https://www.osc.edu/resources/online_portals/ondemand
https://www.youtube.com/watch?v=OxNBSk5_sTw

 127

Linux cheat sheet for RNA-seq analyses on HPC

This section introduces some basic Linux commands used in this tutorial. It serves more

like a cheat sheet not a Linux tutorial, nor a knowledge documentation. It focuses on the

most commonly used command lines.

File managements in Linux

The most critical basic skills in Linux are file managements. One basic concept in In

Linux (and Unix) is that everything is a file; a file is a file; a directory (folder in
Windows) is a file; a device (a hard drive, a keyboard, or a mouse) is considered to be a

file; and a software exist in Linux as a file. Therefore, knowledge and skills of Linux

commands about file managements are essential to work on any Linux system. The

following are introductions to some basic commands of file management.

What are inside the room? - List contents of a directory

ls is one of the mostly used Linux command. It prints out the contents of a directory on

your terminal screen. After login to HPC (or on your desktop terminal), simply issue,

 ls

This will list the names of files in the current directory by default. A Linux command

takes options, and the frequently used option of ls is -l, which allows ls to output files in

the long format. The long format provides more information about each file and may

have the following appearance,

total 2576

-rw-rw-r-- 1 kejinhu kejinhu 827 Dec 27 15:48 STAR_Index.slurm

drwxrwxr-x 12 kejinhu kejinhu 8192 Jan 2 10:58 fastq_files

drwxrwxr-x 3 kejinhu kejinhu 4096 Dec 28 10:18 humanGenomeIndex

drwxrwxr-x 2 kejinhu kejinhu 4096 Dec 30 12:42 multiqc_data

-rw-rw-r-- 1 kejinhu kejinhu 394 Dec 31 13:26 samtools_index.slurm

-rw-rw-r-- 1 kejinhu kejinhu 472 Dec 30 14:58 samtools_sort.slurm

Another commonly used option to ls is -h, which means outputing the files in human
readable format. Try,

ls -l -h

Multiple potions can be combined. For example, the script of ls -l -h can be used as,

 128

 ls -lh

There are hidden files in any directory. A hidden file starts with a dot. There are at least

two hidden file, “.” and “..”. Single dot means the current directory, and double dots

indicate parent directory (the directory one level up). Therefore, ls . functions the same

as ls, and ls .. prints the files inside the parent directory. We need the option of -a to see
the hidden files. Try,

 ls -a

The three options of -a -l and -h can be combined,

 ls -ahl # This functions the same as ls -a -l -h does.

When the options are combined the order of the options does not matter and ls -ahl, ls -

hal and ls -lha do the same thing.

Looking for help

A single letter option of a Linux command is indicated by a single dash -, but if you use

a multiple-letter option (i.e., word option) two dashes are used, i.e. --. The most useful

option for all Linux command is --help. The --help option outputs the help page of a

Linux command line. For example,

ls --help # This displays the help page for the command of ls.

Please note that Linux has a help command, which is used differently from the --help

option. Please try,

help help # This prints out the help page of the help command. The –help

option is more useful than the help command. Please try you self, help cd; help echo;

help pwd.

Behind each Linux command is a software, and you can find the versions of many

commands using the --version option of a command. For example,

 ls --version

The information outputted by the above script indicates that ls is one of the GNU core

utilities.

Another way to find out help information is using the manual command, man, try,

 129

 man ls

The above code will bring about the manual pages on the terminal screen. The manual

is generally longer than a single screen can accommodate, and you can navigate along

the manual line by line using the down or up arrow keys, or page by page using the page-

up or page-down keys (or key combinations). To quit the manual pages and return to
the shell terminal, you just hit the letter q key on your keyboard.

Of course, you can google any of your Linux questions and you can always find a

solution to your questions. I do googling all the time whenever I have a Linux issue.

Make a storage room using the command of mkdir

When you login to your HPC account, you will land on your home directory, i.e.,

/home/yourName. You can make your own directory to hold your files using the

command of mkdir, which means “make directory”. mkdir is also a GNU core facility
(You can see this by issuing mkdir --version). The syntax is mkdir directory_name, for

example,

 mkdir test

The above code generates a directory named test. Issue ls or ls -l to see the generated

directory of test.

You can make multiple directories in one code. Within the test directory, make

subdirectory of example1, example2 and example3,

 mkdir example1 example2 example3

Use ls or ls -l to see your newly generated directory.

From one room to another – the hange directory command cd

The second essential and most used command is cd, i.e., Change Directory. You can go

to the new directory test you just generated,

 cd test

Now, use ls or ls -l to see the contents of the test directory, and you will know there is

none. Make sub-directory within the test directory,

 mkdir test1 test2 test3

 130

use ls or ls -l to see the newly generated subdirectories. You will see you have generated

three sub-directories.

As described above the double dots denote parent directory. Therefore, you can go to

the immediate parent directory using the code below,

 cd ..

You are back in the home directory in this case. You can go directly to any deep branch

directory by providing the path to it. For example,

 cd test/test1

The tilde sign ~ denotes the home directory, you can go to home directory from any

directory using the code,

 cd ~

The above code navigates you from the test1 directory to the home directory, and now
you can see a tilde sign after your username.

You can go to the last directory you were using,

cd -

Where am I?

Another essential Linux command line is for printing out the path to the working

directory, i.e., pwd,

pwd # This outputs the full path to the current directory.

Useful Linux techniques

Copy and paste the text

To copy target text, you can just highlight the text to be copied using your mouse cursor.

When you release your mouse after choosing the text, you will see a flashing scissors.
This indicate that the text is copied onto the clipboard, and you can now paste it as

needed. For iMAC, you can use the key combination of “command + V” to paste the

copied text from the clipboard to the terminal.

Reuse previously executed command lines

 131

You can use the up-arrow key to bring back the executed commands. You can keep
hitting the up-arrow key till you reach the command you are interested in, and you can

hit enter to re-execute the same command, or you can modify your script and execute

the revised script. The down-arrow key can be used similarly.

Path expansion for file/directory management

The wildcard * is the most used path expansion character. * can be used to match any

character or no character in a character string. It is useful to manipulate the file names

in writing codes for RNA-seq analyses of multiple files. Other means of path expansions

include “?” (question mark), “[]” (square brackets) and “{ }” (curly braces). ? matches
exactly one character; [] are used to specify characters for which one of them will be

matched; { } are used to list character string of patterns to be matched.

Bash comments

The pound (or hash) sign # is the comment indicator in Linux. Within script, anything

after # till the end of the line is a comment and is ignored by the bash interpreter. In this

tutorial, # is also used to indicate comments after a command line/script.

The most useful key skills in Linux

q key, the q key means quit from the online manual page or an opened text file.

tab key, the tab key functions as a completion key in both Linux terminal and R. This

key will save you a lot of time and avoid typos.

Control + C, pressing the Control and C keys together will terminate a process in

Linux.

Control + D, exit the Linux terminal. It is equivalent to exit followed by ENTER key.
Control + E, take the cursor to the end of the command line.

Control + A, go to the beginning of the command line in the screen.

List of command Linux commands, operators used in this tutorial

cd, change directory

cp, copy files

cat, concatenate files and print on the standard output

 132

echo, output the line of text/string, which is passed as an argument.

gunzip, compress or uncompress files.

ls, list the files in the current directory. The mostly used option is -l, and you can

combine the -h with the -l options, i.e., -hl to display the more human readable output.

lscpu, display information about the cpu architecture.

pwd, print out the path of the current directory.

mkdir, make directory.

nano, open or create a text file, and then view, and/or edit it in Linux environment.

rm, rm files and/or directories.

man, an interface for the online reference manuals. It is very useful whenever you need

help about a Linux command. Examples: you can try to retrieve the manuals for cp, or

rm, or pty: man cp; man rm; man pty.

help, a command to get the help page of Linux command. The syntax is help command-

line. For example, help cd; help help; help pwd. Please note that Linux command lines

have a --help option, which has a different syntax (see below).

--help, a command option that retrieve online help pages when used with a command.
Example, try: cp --help.

less, displays the content of a file one page first, and allows for subsequent navigation

within the file page by page or line by line using the arrow keys and page keys.

head, output the first part of a file.

mv, move files around, and can be used to re-name files.

module spider, list the specified module.

module load, load the specified module.

nano, open a text file in the nano text editor.

rclone copy, copy files and directories between HPC and cloud storage.

rclone config, configurate access to your cloud storage.

 133

srun, run a parallel job on cluster managed by SLURM. Call exit to exit the interactive
srun mode.

sbatch, submit a non-interactive batch script to SLURM.

squeue, view information about jobs managed by SLURM. The mostly used option with
the squeue command is the user option -u, for which the value should be your HPC

username. It will print out a long list of jobs if you do not use any option, i.e., squeue.

scancel, cancel batch jobs.

rsync, a utility that can transfer data (files and directory) between your local computer

and HPC.

Output redirection operator >, > diverts the standard output of a command into the

specified file.

The pipe operator |. In Linux, the pipe operator is used to redirect the output of one

command to another command to process as input data. The syntax is, command-1 |

command-2 | command-N.

Line continuation operator \, the backslash serves as a line continuation operator when

placed in the last place of a script line. Backslash is frequently used in RNA-seq

coding since you encounter long command line a lot when preparing code for RNA-

seq analyses. Please note that \ is the last character and there is even no white space
after \.

tail, output the last part of a file.

scontrol show job [job ID], this will print out the basic information about the listed job
(identified by the job ID) including number of CPUs, tasks, nodes, CPU/task, memory

and others.

scontrol show partition. This will print out the partition systems on your HPC.

Scontrol.

scontrol show node [node ID], this will output the information of the specified node.

wget, the non-interactive network downloader.

wc, count the number of bytes, lines, words, characters, and others of specified files,

and print out the count results.

 134

The for loop is frequently used in RNA-seq analysis to analyze multiple samples using
the same code. Linux for loop has the syntax of, for variable in string; do application

code; done. In this syntax, the red texts are invariable; the purple ones are user defined.

In RNA-seq, the string is usually a set of file names; the variable represents the file

names iterating over the string list; the application code is package-specific instruction

of compute job.

Major R packages used

o DESeq2

o tibble

o AnnotationDbi

o org.Hs.eg.db

o dplyr

 135

References

1. Shotts W. The Linux Command Line.

2. The-Standish-Group. Modernization - Clearing a pathway to success. Available at:

https://www.standishgroup.com/sample_research_files/Modernization.pdf.

3. Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner.

Bioinformatics. 2013;29:15-21.

4. Dobin A, Gingeras TR. Mapping RNA-seq Reads with STAR. Curr Protoc

Bioinformatics. 2015;51:11 14 11-11 14 19.

5. Sterling T, Anderson M, Brodowicz M. High performance computing : modern

systems and practices. Cambridge, MA: Morgan Kaufmann; 2018: xxviii, 689 pages.

6. Hu K. Become Competent in Generating RNA-Seq Heat Maps in One Day for

Novices Without Prior R Experience. Methods Mol Biol. 2021;2239:269-303.

7. Hu KJ. Become Competent within One Day in Generating Boxplots and Violin Plots

for a Novice without Prior R Experience. Method Protocol. 2020;3.

8. Martin T. The Undergraduate Guide to R.

9. Venables WN, Smith DM, Team RC. An Introduction to R.

10. Chalker A, Franz E, Rodgers M, et al. Open OnDemand: State of the platform, project,

and the future. Concurr Comp-Pract E. 2021;33.

11. Hu K, Ianov L, Crossman D. Profiling and quantification of pluripotency

reprogramming reveal that WNT pathways and cell morphology have to be

reprogramed extensively. Heliyon. 2020;6:e04035.

12. Alnasir JJ. Fifteen quick tips for success with HPC, i.e., responsibly BASHing that

Linux cluster. PLoS Comput Biol. 2021;17:e1009207.

13. Sterling T, Anderson M, Maciej B. The Essential Resource Management. High

Performance Computing - Modern Systems and Practices. Cambridge, MA, USA:

Morgan Kaufmann - Elsevier; 2018:141-190.

14. SchedMD. SLURM Wordload Manager. Available at: https://slurm.schedmd.com/.

15. Li H, Handsaker B, Wysoker A, et al. The Sequence Alignment/Map format and

SAMtools. Bioinformatics. 2009;25:2078-2079.

16. IGV. Integrative Genomics Viewer. Available at:

https://software.broadinstitute.org/software/igv/home.

17. Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV):

high-performance genomics data visualization and exploration. Brief Bioinform.

2013;14:178-192.

18. Robinson JT, Thorvaldsdottir H, Winckler W, et al. Integrative genomics viewer. Nat

Biotechnol. 2011;29:24-26.

https://www.standishgroup.com/sample_research_files/Modernization.pdf
https://slurm.schedmd.com/
https://software.broadinstitute.org/software/igv/home

	cover
	RNA-seq analyses using HPC_book

