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Preface 
 

I am a cell biologist leading a small research lab in stem cell biology and cellular 
reprogramming. As a PhD student back from 1999 to 2003, I investigated gene 

expression by Northern blot analyses, and reverse transcription PCR (RT-PCR), which 

are tedious but still provide very little information from the perspective of current 

technologies. Nowadays, RNA sequencing (RNA-seq) is a commonplace experimental 

tool for biological and biomedical sciences. My lab is of no exception. I started to use 

RNA-seq technology after I established my own research laboratory in 2011. Amazed 

by the astronomical and global information RNA-seq can provide, yet I was stranded in 

analyzing the RNA-seq data of daunting size.  Our institutional bioinformaticians gave 

me critical support in the analyses of our RNA-seq data during those early years. 

However, as a scientist I had an uncomfortable feeling of “being in the dark” when I did 
not understand how those data are processed and analyzed. In addition, when I have 

hundreds of gigabytes of data, I was not satisfied in that I need to wait for another 10 

days or longer to see the statistical and normalized count data. Furthermore, the 

bioinformaticians generally conduct standard analyses and customized or project-

specific analyses are not easy to achieve when you rely on someone else who is not quite 
a former member of your research team. This motivated me to learn Linux, R, high-

performance computing (HPC), and many packages required for RNA-seq analyses. It 

was not an easy journey for a scientist without a degree in computer science, data science, 

or statistics. There were so much reading, googling, practicing, frustration, and email 
communications with experts. I realize now that an end-to-end accessible tutorial will 

save months of time for a bench scientist during this learning process. It took me around 

one year to become proficient in RNA-seq analyses after starting this adventure.  I 

believe with this tutorial you may need just one month or even one week to become 

competent in RNA-seq analyses. It may reduce the situations of frustration, googling, 
and asking around. Given the pain I experienced in learning RNA-seq analyses, I would 

like to make this tutorial available to my fellow scientists, postdoctoral fellows, PhD 

students, and other lab workers. I hope this tutorial will quickly enable and empower 

you. I dedicate this volume to the experimental scientists in biological and biomedical 

sciences like me. Unlike the “abstract” tutorials from bioinformatics tool developers that 
make you feel lost, this is a “foolproof” tutorial from a bench scientist for bench 

scientists.  

 
Copyright statement 

 
All rights are reserved.  
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Summary 
 

RNA-Seq analysis software has been well-established and mature. High-performance 

computing (HPC) has become available to the general science community, and this 

makes RNA-seq analyses much easier. Scientists in biological and biomedical sciences 

now can and should analyze RNA-seq data by themselves as in the case they use Excel, 
Illustrator, PowerPoint, and the specialized software in their respective fields on a daily 

base. With the infrastructure established, what the bench scientists need is an integrated, 

complete, and enabling tutorial. The current tutorial serves this purpose and provides a 

complete set of skills from end to end for RNA-seq analyses. The major packages 

introduced here are FastQC and MultiQC for quality control, STAR for indexing of a 
reference genome and sequence alignments, SAMtools for sorting, indexing and 

reviewing of the BAM/SAM file data, IGV for viewing the resulting alignments, HTSeq 

for counting reads of each feature, and DESeq2 for analyses of the differential 

expressions on the RStudio platform, all of which are widely used software in the RNA-

seq field. The introduced skills include but are not limited to uploading of raw RNA-seq 
data to HPC, management of the data, downloading of the reference genome sequences 

and their annotations from the public database, generation of the reference genome 

indices, quality controls of the sequencing data, alignment/mapping of reads to the 

reference genome, sorting and indexing of the BAM file data, counting of reads to the 
features, review of data in various formats at each major step, differential expression 

analyses, combining of the result and read count tables, annotation of features in the 

result data frame, saving of the resulting data, and transfer of data to local storage from 

HPC. With the novices in mind, the very basic Linux commands are introduced in the 

context of RNA-seq analyses. It also introduces many basic skills about use of the HPC 
platform such as module usages, resource request using SLURM, and file managements. 

Taking advantage of HPC, this tutorial introduces the optimized procedures for the 

entire pipeline, which can significantly reduce the pipeline time so that one can complete 

analyses in less than one day for a typical RNA-seq project of most labs.  This is 

achieved by multiple threading at the data levels (i.e., simultaneous 
calculation/processing of data of one individual sample) and parallel calculation at the 

sample levels (i.e., simultaneous calculation/processing of many samples) at different 

major steps using various skills.  
 

 

Keywords 
 

RNA-seq, RNA-seq analysis tutorial, STAR, HTSeq, DESeq2, FastQC, MultiQC, 

SAMtools, high-performance computing, SLURM, HPC, nano, Linux, R, RStudio, 

SRA-Toolkit, IGV, FASTQ, BAM, Globus, FileZilla  
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Limitations 

 

This tutorial aims to empower and motivate newbies of RNA-seq analyses. As a primer 
to RNA-seq analyses, it provides the basic procedure of a selected pipeline so that the 

audiences can independently conduct the end-to-end procedure, but it does not provide 

comprehensive procedures for any software introduced here. For complete software 

documentation, extensive tutorials and advanced skills, audiences should consult the 

original literature and individual tutorials of each software (SRA-Toolkit, STAR, 
HTSeq, FastQC, MultiQC, IGV, nano, SLURM, DESeq2, Linux, R, RStudio, and 

others).  There are other pipelines, but this tutorial uses the popular STAR for alignment, 

HTSeq for counting of reads, and the widely used DESeq2 for analyses of differential 

expressions.  After you become proficient with one pipeline it is not difficult to establish 

another pipeline by your own.  
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RNA sequencing (RNA-seq) has become a commonplace tool in biological and 

biomedical sciences. The cost of an RNA-seq run is at the level of or less than that of a 
vial of a common antibody but the information from an RNA-seq experiment is 

astronomical and global compared to that of a western blot or an RT-PCR experiment. 

To most laboratories, the bottleneck is at the stage of data analyses, and bench scientists 

heavily rely on the full-time professional bioinformaticians. Bioinformatics service is 

frequently not available to many underprivileged laboratories especially in the current 
funding situation. Even for the research groups with bioinformatics support, the ability 

for a bench scientist to analyze RNA-seq data has much benefit and can make a 

difference in scientific discoveries. RNA-seq analysis tool/software has now become 

established and mature. Progress in infrastructure in both software and hardware 

development now makes it possible that a bench scientist can readily analyze RNA-seq 
data given an accessible, enabling, and end-to-end tutorial.  

 

RNA-seq analyses generally require skills in Linux and R programming. This 

prerequisite discourages many bench scientists to analyze RNA-seq data. Learning 

Linux command lines seems difficult, but I agree with the statement that “it’s not that 
it’s so hard, but rather it’s so vast” 1.  The fact is that Linux is easy! It just has too many 

Linux commands. The good thing is that we do not need a lot of commands to conduct 

RNA-seq analyses. A survey by the Standish Group indicates that less than 5% of the 

functionalities of any application software are generally used by an ordinary user 2.  I 
regularly use Word, Excel, PowerPoint, Illustrator and Photoshop, but I may just use 

less than 5% of their functionalities. We just need a small fraction of the command 

reservoir to conduct RNA-seq analyses although it involves two major platforms (Linux 

and R platforms) and many Linux modules and R packages. This tutorial will introduce 

these <5% of the commands in those packages needed to analyze RNA-seq data 
efficiently and professionally. Of course, you could become an advanced user of Linux 

after you are on board. The most difficult time is at the beginning when you adventure 

to a new area.  

 

RNA-seq analyses generally need at least a high-end desktop computer, a workstation, 
or a server because of very high requirement on computational resources. For example, 

the popular and fast aligner STAR requires at least 32 gigabytes (G) of RAM for RNA-

seq alignments to the human genome 3, 4.  Almost all research universities now have or 

have access to a high-performance computing (HPC) or supercomputing facility. With 

HPC we usually do not worry about the memory and storage, which are the two major 
limiting factors in using a desktop computer for bioinformatics. RNA-seq analyses need 

Linux system and many Linux-oriented software. Even though you have a decent 

desktop or workstation the installation and configuration of various specialized software 

are a headache for bench scientists since you need to use command lines to install and 

configure the specialized software. At the beginning, I took a surplus PC with 32 G of 
RAM, replaced its Windows with Ubuntu, and installed the specialized software for 

RNA-seq analyses. I nearly gave up at this frustrating stage. With HPC, you do not need 



 11 

to install the software.  Many widely used software modules have already been installed 

on the clusters by your HPC  team, and you just load the required software to use.  
Additional advantage is that we can easily work anywhere with HPC, which is difficult 

to achieve with your desktop computer or workstation. Last, more HPC facilities are 

adopting the web interface, and this reduces the barrier to HPC access new users usually 

encounter with the traditional SSH (secure shell) interface and command lines needed 

to conduct basic communication with HPC. Even without web interface, using HPC is 
not arcane, and in fact HPC is very simple to use. We just need the basic Linux skills, 

and skills about job submission and the specialized software for your analyses.    

 

RNA-seq analyses require many Linux and R software packages, and the 

documentations for the software are highly specialized but are not very helpful to most 
biological and biomedical students/scientists. In addition, those documentations are 

isolated and package specific. With the bench scientists in mind, I thus provide notes 

even for many basic Linux and R commands. I truly believe one more page may not cost 

a dime in this era of digital storage, but it will save an audience hours of time and reduce 

googling and frustration, and even keep the audiences from dropping in this usually long 
and frustrating learning process. However, the audiences need some basic knowledge 

about Linux and R platform. For those without any prior Linux experience, I was one of 

you. I started with the book of “Learn Linux in 1 Day” by Krishna Rungta, “Learn Linux 

Quickly” by Ahmed Alkabary, and the more scholarly “The Linux Command Line” by 
William Shotts 1. Readers can also refer to the Linux primer: “Essential Linux” as 

Appendix B in the textbook of “High-performance Computing – Modern Systems and 

Practices” 5. A great news is that many essential skills mentioned in the primers are in 

fact not necessary for RNA-seq analyses. R is even easier with the availability of 

RStudio. I have provided brief introductions to R in two other tutorials 6, 7. I learned R 
by reading and practicing the books of “The undergraduate Guide to R” 8 and “An 

introduction to R” 9.  

 

Different sets of software can be used for RNA-seq analyses, and this tutorial uses the 

popular and ultra-fast STAR for alignment, the widely used HTSeq for counting, and 
the trusted DESeq2 for analyses of differential expression of genes. It employs the 

widely used SLURM (Simple Linux Utility for Resource Management) for HPC 

resource managements (https://slurm.schedmd.com/ ).  

 

Figure 1 provides the workflow of RNA-seq analyses introduced in this tutorial.  In this 
tutorial, the Linux commands, R functions and scripts will be indicated by red text. The 

notes and comments after scripts will be indicated by a pound sign #. Many supporting 

commands are included in the comment parts after the major commands/scripts. The 

scripts and comments about them are also distinguished by the DengXian Light font of a 

smaller size than the Times New Roman font used in the main text. Some screen outputs 

are included as blue texts, but the outputs of a command or computational task are 

usually not included because of space consideration.  

https://slurm.schedmd.com/
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Figure 1. Workflow of RNA-seq analyses.  Green texts by arrows indicate 

processes/procedures; red texts, data/file statuses; black texts by arrows, 

package/software or command names.  
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An RNA-seq project involves multiple samples and processing of individual samples 

using various software at different steps requires a lot of hands-on time. Serial 
processing of all the samples using one script with the bash for loop significantly 

decreases the hands-on time. This introduced strategy, however, does not reduce the 

machine time although it releases you from tedious typing. I addition, serial calculation 

may not make good use of the HPC resources and compute power. This tutorial therefore 

has also provided an optimized pipeline so that analyses of a typical RNA-seq project 
can be completed within one day. Taking advantage of the computation power of HPC, 

the fast pipeline is achieved by use of multiple threading at the data and sample levels, 

and parallel processing at the sample levels at various major steps. The following table 

depicts the differences for the optimized and non-optimized procedures.   

 

Regular and optimized computing time for the major steps 

Steps       Optimized (minutes)  Regular/not optimized 

Downloading RNA-seq data  6   36 minutes 

QC the 14 FASTQ files   3   28 minutes 

Indexing human genome   21   3 hours 13 minutes 

Alignment of 7 RNA-seq(paired-end)  10   30 minutes to > 4 hours 

Sorting of the 7 BAM files   5   105 minutes 

Indexing of the 7 BAM files   1   7 minutes 

Counting of the 7 samples   84   > 8 hours 

Total computing time   130 minutes  > 14 hours 

 

Notes:  

1) The computing time for DESeq2 steps are not included since the machine running 

time is not a limiting factor and the hands-on time dictates the total job time.  

2) The above times are based on 7 human RNA-seq samples of paired-end 

sequencing with reads/sample ranging from 28 to 48 million and total reads of 
280.4 million (average 40.1 million/sample), which are the typical sizes (for both 

sample number and sequencing depth) of an RNA-seq project for most labs.  

3) The speed optimization is achieved by multiple threading at the data levels or 

parallelism at the sample level, or both, as well as use of the ultrafast aligner 

STAR.  
4) The times at each major step above were the test results on the Cheaha clusters.  

 

Platform and test data 
 

This tutorial was written in Microsoft Word for Mac version 16.63.1 on the macOS Big Sur 

version 11.3.1 with additional use of Adobe Illustrator and the screenshot function of iMAC. 

The RNA-seq pipeline was established and tested on Cheaha, which runs Red Hat Enterprise 

Linux (version 7.9) with the Open OnDemand portal. The DESeq analysis step was carried out 

on the RStudio server of Cheaha. This tutorial uses 7 published human RNA-seq samples of 

two cell types with an average sequencing depth of 40 million/sample, which are available from 

the GEO database.  
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FASTQ files are generally what a bioinformatician starts with in his/her analyses of 

RNA-seq data. Your raw RNA-seq data in the FASTQ format may sit in a sequencing 
facility, a database, or your local storage. This chapter therefore introduces different 

methods for transferring your raw RNA-seq data onto HPC for analyses.  
 

2.1 Logon your HPC account and generate project directories on HPC 
 

Nowadays, supercomputers usually have or will have an intuitive and easy-to-use web 

portal. This tutorial thus introduces access to HPC via a web portal powered by Open 
OnDemand developed at the Ohio Supercomputer Center (OSC) 10, on a browser.  The 

access to HPC via SSH terminal is also introduced but it is more “exotic” to the 

biological and biomedical scientists/students. Open OnDemand has been used by many 

universities including Harvard, Yale, Stanford, Princeton, Caltech, and others. Your 

HPC web portal may have a different name (e.g., HPC web interface, HPC gateway, 
HPC board, or others) and appears different, but upon login you will use almost the same 

codes/commands introduced in this tutorial.   

 

You need a HPC account to access your HPC.  Login to your HPC account via the web 

portal (at rc.uab.edu in the case of Cheaha on the campus of University of Alabama at 
Birmingham, UAB) using your credentials. If you do not have an account yet, contact 

your HPC team to setup your account. After login, you can go to the HPC shell terminal 

by clicking the “>_Cluster Shell Access” in the pulldown menu under the Clusters tab 

on the HPC web dashboard (Cheaha in this tutorial) (Figure 2). This will take you to 
your home directory on the HPC login nodes as indicated by a tilde ~ sign (Figure 3). 

The login node is indicated by UserName@loginNNN (underlined in red in Figures 3, 

5 and other screenshots).  

 

HPC may use different Linux distributions. If you are curious about which Linux your 
HPC is using you can find out by issuing the following command after the dollar prompt 

sign $ in the shell terminal, 

 
 lsb_release -a   # Cheaha uses Red Hat Enterprise Linux. Your HPC may use 

Debian, Ubuntu, or others. Alternatively, you can find similar information by calling 

cat /etc/*release. 

 
You can find out the full path to your home directory using the pwd (Print Working 

Directory) command after the $ prompt sign (the first command in Figures 3 and 5),  
  

pwd  # This outputs the full path to your working directory on your terminal screen. 

 

If you are curious about what your HPC login nodes look like, you can see the 

specifications of your login nodes by calling the display/list CPU command lscpu (the 

second command in Figure 3),  
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lscpu  # The output of this command gives information about the login node CPUs 

(The contents between commands lscpu and ls in Figure 3). 

To see the subdirectories/files on your home directory, issue the list command ls (the 

last command in Figures 3 and 5),  
  

ls  # The ls command here outputs a list of subdirectories of my home directory 

/home/kejinhu, which are in blue text (bottom in Figures 3 and 5), and files (black in 

Figure 5, i.e., tutorial.RData). The Linux term “directory” is equivalent to “folder” in 

Windows.  

 

Upon login onto Cheaha, there is a table summarizing the partition categories on the 

HPC dashboard (similar to the partition table in Figure 5; not captured in Figure 2). You 

can also see such a partition table in the Cheaha shell terminal. Please note that your 

HPC may have a different set of partition names and different specifications depending 
on the capacity of your HPC. This is essential information when you will request 

compute node resources using the Simple Linux Utility for Resource Management 

(SLURM) job scheduler. In the case that your HPC does not have this summary table 

for partitions on the web portal and/or login node front page, you can always find out 

the detailed information about your HPC partitions using the following code, 
  

scontrol show partition   # This outputs information about all partitions of 

your HPC (Figure 4). You can print out information about a specific partition by 

specifying the name of the partition, for example, “scontrol show partition short” will 

output the information about the short partition of Cheaha.  

Figure 2. HPC web interface with Cheaha as an example. The pulldown menu for 

Clusters (the grey tab) is extended and the Shell Access menu is exposed in this 

screenshot.  
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Alternatively, you can also login your HPC account via the traditional secure shell (SSH) 
on your desktop device terminal (Figure 5). Upon login, the commands are the same 

regardless the device you use or the interfaces (web portal or SSH) although the screen 

appearances may vary.  
 

ssh kejinhu@cheaha.rc.uab.edu  # The syntax is ssh user_name@hostname. 

After this command, the HPC system will ask you for the password. Please do not be 

nervous when you do not see the password during typing because they do not show 

(top in Figure 5).  

 

We will conduct the analyses and save the results in the data directory. You use the cd 
(Change Directory) command to change the working directory from your home 

# Print the path to the working directory

# List CPU information for 
the current nodes

# List files/directories in the working directory

Figure 3. HPC login node terminal and HPC home directory. Login node name is 

underlined in red. The lscpu command reveals that the Cheaha login nodes have 2 nodes 

and 96 CPUs. The ~ after the login node name indicates that you are in your home 

directory. Each Linux command is described in yellow text immediately after the command 

as marked by a #.  

mailto:kejinhu@cheaha.rc.uab.edu
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directory to your data directory (Figure 6). For convenience, I use my data directory on 

Cheaha, /data/user/kejinhu as an example; therefore, I issue cd /data/user/kejinhu in my 
HPC home directory,  
 

cd /data/user/kejinhu # This takes me to the /data/user/kejinhu directory (the 

second command in Figure 6). For additional usage of the cd command, see the 6th 

and 9th commands. Please note that the home directory sign ~ has been replaced 

by the subdirectory names of each data subdirectory, i.e., kejinhu, RNA_seq_tutorial, 
and fastq_files in Figure 6. Upon in these directories, you can use the list command 

ls to see their contents (the 3rd, fifth, and 8th command in Figure 6).  

 

Under your data directory of HPC account, generate a directory of RNA_seq_tutorial 
using the “make directory” command mkdir (the fourth command in Figure 6), 

# Find out partition information
 of your HPC 

Figure 4. Find out the partition information of your HPC using the scontrol show 

partition command. The screenshot captured information for some of the partitions only 

(interactive, short, long, and a little of medium). 
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mkdir RNA_seq_tutorial  # This generates a directory of RNA_seq_tutorial 

within which you will further make a subdirectory of fastq_files later.  

 
cd RNA_seq_tutorial  # This takes you into the RNA_seq_tutorial directory (the 

sixth command in Figure 6).  

 

Then, prepare a subdirectory of fastq_files within the RNA_seq_tutorial 

directory (the 7th command in Figure 6), 
 

mkdir fastq_files  # This generates a fastq_files subdirectory into which you will 

transfer your original RNA-seq data files in FASTQ format (Figure 6).  

  
cd fastq_files   # This changes the working directory from the current 

working directory of RNA_seq_tutorial to the fastq_files directory (the 9th command 

in Figure 6).  

Figure 5. Login HPC via SSH on an iMAC terminal. The partition table is also 

captured in this screenshot. You can see the same table but with slightly different 

appearance when you login via the web interface. ~ indicates the home directory. 

# Login to HPC via secure shell
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2.2 Find and load a module on HPC with the SRA-Toolkit module as an 

example 
 

To analyze RNA-seq data on HPC, we first need to move the original raw data in 

FASTQ files onto your HPC. To this end, a software or a module is required. Your 
FASTQ files may be stored in various places. The best tools for transferring data to HPC 

depend on where the FASTQ files are stored. In this tutorial, we will download the 

RNA-seq data from the Sequence Read Archive (SRA) repository. The customized tool 

for downloading data from the SRA repository is the SRA-Toolkit. Your HPC should 

have the SRA-Toolkit module installed already if your institution has a community of 
bioinformaticians. Many versions of a module are usually installed on any HPC, and the 

command module spider is very helpful to find out the available versions of a specific 

software.  
  

module spider sra  # This returns a list of SRA-Toolkit of various versions 

installed on your HPC (in the lower middle of Figure 6). The command module avail 

functions similarly (see below). 

 

Then we load the SRA-Toolkit using the command of module load (Figures 6 and 8). 

“module load” is the command equivalent to “clicking on an application icon” in 

Windows. In Windows system, we click to invoke an application software (for example, 
Excel or Word) and their specific functions. In Linux, we use command lines to 

communicate with the computer. 
 

module load SRA-Toolkit  # This loads the default version of the SRA-Toolkit 

(Figures 6 and 8). Please note that the module name for the module load command 

is case sensitive, but it is not for the command of module spider or module avail (see 

below). If you encounter issues in loading the SRA-Toolkit module (or other 

software), please try a different spelling. The best practice is that you copy the entire 

module name with the version information and paste them after the module load 

command, for example, module load SRA-Toolkit/2.10.7-centos_linux64. You can 

call module avail sra after loading it, and you will see which version has been loaded. 

The loaded version is indicated by an “L”. When you do not include the version 

number the default version is loaded. The default version is indicated by a “D” when 

you output the module information using “module avail”. For module spider, you do 

not even need to spell out the full name of a software package, for example, you 

can issue module spider sr, and it will return all the SRA-Toolkit versions available 

on your HPC. This is also true for module avail. Try module avail sr.  
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Figure 6. Find out and load Linux modules using the commands of module 

spider and module load. Other Linux commands were also captured in this 

screenshot. Please note that this screenshot is not a full-screen screenshot, and 

some information was cut off. The yellow texts are illustrations by the author. 

# Print path to the working directory

# Change directory

# List files/directories

# Make 
directory

# List files/direcotries

# Find out
 module 
information

# Load module
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2.3 Locate the SRA data files in the repository to download 
 

In this tutorial, we will use the RNA-seq data set of human embryonic stem cells (hESCs) 

and human fibroblast BJ cells with the Gene Expression Omnibus (GEO) series access 

code of GSE138170 11. In the GEO accession query box at 

https://www.ncbi.nlm.nih.gov/geo/ , you search for GSE138170 (shaded in yellow in 

Figure 7). When you open the GEO page for this dataset, you will see there are 7 samples 
under the Samples entry (on the left column of the page). Click the HTML text More 

(or the plus sign + thumb nail by the More; they will become “- Less” after clicking), 

and you will see the GEO sample (GSM) codes for the 7 samples (GSM4101203 – 

GSM4101209). After you click any of these 7 HTML sample codes, you will see a page 

containing information about the selected RNAs-seq data. At the bottom of this page, 
you can see the SRX codes. The SRX codes for these 7 RNA-seq are: SRX6923623 - 

SRX6923629. Click one of the HTML SRX codes and you will see a new page about 

the selected sample. At the bottom of the page, you will see the SRR code in a table. 

The 7 SRR accession codes are: SRR10203569 - SRR10203575. We will use these SRR 

codes to download the data sets using methods introduced below.  
 

Alternatively, under the “Relations” section on the GEO series code (GSE) page, click 
on the clickable HTML SRA project code (SRP code) and you will land on a page with 

the list of the GEO sample codes. Now, you can also locate each SRA code via the GEO 

sample codes described above.  

 

2.4 The prefetch command for downloading the SRA files 
 

For the purpose of demonstration, this section introduces downloading each data file 
using the SRA-Toolkit command prefetch on both the login nodes (not encouraged) and 

a compute node (see below), 
 

prefetch SRR10203569   # This downloads the data for the SRR10203569 

sample (Figure 8). It automatically generates a directory with the entry code as the 

Figure 7. Find out the RNA-seq data in the GEO repository to download. The GSE138170 accession code 

in the GEO search box is shaded in yellow. 

https://www.ncbi.nlm.nih.gov/geo/


 23 

directory name containing the file of SRR10203569.sra. Use the command ls to see 

the resulting directory of SRR10203569. You can go inside the SRR10203569 

directory using cd SRR10203569, and see the file using the ls command (Figure 8). 

To come back to the parent directory, i.e., fast_files directory, simply issue “cd ..”. 

The“..” here represents parent directory (Figure 8). You can download several files at 

one command, for example, prefetch SRR10203569 SRR10203570. This single code 

would download the files for these two samples.  You can find the help page of the 

prefetch command by calling, prefetch --help after you load the SRA-Toolkit 

module.  

 

2.5 Use the fasterq-dump command to convert SRA files into FASTQ ones 
 

After you run the above code on the login nodes, you will see a subdirectory with a name 

of the sample code under the directory of fastq_files. You can convert the SRA files into 

FASTQ files using the SRA-Toolkit command fasterq-dump on the login node (not 

encouraged) outside the subdirectory, 
 

fasterq-dump SRR10203569   # This generates two FASTQ files 

(SRR10203569_1.fastq  and SRR10203569_2.fastq) outside the SRR10203569 

Figure 8. Download RNA-seq data from SRA repository using the prefetch command, 

and convert the SRA files into FASTQ files using the fasterq-dump command. The 

subdirectory generated automatically is in blue text. The yellow texts in the screenshot 

are illustrations added by the author. 

# Load the SRA-Toolkit module

# Download a sigle SRA file

# Go to the directory with the .sra file

# List the file in the SRR10203569 directory

# List with the -h and -l options (combined use)

# Go back to parent directory

# Convert a sra file
 to a FASTQ file

# List with the -h and -l options (combined use)

On-screen progress reports

Output 
of 

the ls 
command

# Go to the directory of SRR10203569

# List the file inside the directory SRR10203569

# Underlined here is the current working directory

# Output of the ls command

# List the directory contents
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subdirectory under the fastq_files directory because the RNA-seq protocol is paired-

end sequencing (bottom in Figure 8). Please note that SRR10203569 here is the 

directory name instead of the file name when you will convert inside the subdirectory 

(see below). Call fasterq-dump --help to find more information about its use.  

 

You can also make the conversion within the SRR10203569 subdirectory. Go to the 

subdirectory, and you will see an SRA file within it. You can convert the SRA file into 

FASTQ files using the command of fasterq-dump (Figure 8), 
 

cd SRR10203569  # This takes you to the subdirectory of SRR10203569.  

 
fasterq-dump SRR10203569.sra   # This also converts the SRA file into two 

FASTQ files, i.e., SRR10203569_1.fastq  and SRR10203569_2.fastq (Figure 8). But, 

these two FASTQ files are located within the SRR10203569 subdirectory. The code 

is the same on the login node and the compute node (see below). Please note that 

you use the file name SRR10203569.sra here (instead of the subdirectory name when 

you convert outside the subdirectory (see above).  

 

You can see the converted FASTQ files using the list command ls with the -h and -l 
options (the last command in Figure 8), 
 
 ls -hl  # The -l option means “long format” and the -h option means the file sizes are 

displayed in the human readable form. The -l and -h options can be used separately (-h -l) or 

together as -hl.  

 

Before we move to the next step, we remove the downloaded files and subdirectory 

using the generic rm (remove) command so that we can experience the downloading of 

the same item again on the compute nodes.  
 
cd ..  # This will bring you back to the parent directory, i.e., the fastq_files 

directory. In Linux, double dots (..) mean parent directory of the current directory, 

and a single dot denotes the current directory. 

 

rm SRR10203569_1.fastq SRR10203569_2.fastq   # This removes the two files 

listed after rm and rm can remove all files listed after it. 

 

Alternatively, we can use a wild card * here to remove the two files altogether with the 

same extension of .fastq using a simpler code, 
  

rm *.fastq  # This removes all files with the extension of “.fastq”within the current 

working directory. Make sure this is what you want to do. 
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You still have another copy of the FASTQ files and the subdirectory of SRR10203569 

since we have converted twice. Now remove the subdirectory and the two FASTQ files 
within it using the rm command, 

 
rm -r SRR10203569  # This removes the directory of SRR10203569 and all the 

files within it. Unlike deleting a file(s), you need to use the recursive -r option when 

you remove a directory even though it is empty.  

 

Use the list command ls to confirm that the subdirectory and files are deleted, 
  

ls 

 

2.6 Work and download FASTQ files on a pseudo terminal  
 

2.6.1 Request compute node resources 
 

It is not encouraged (literally not allowed) to download large files on the login nodes of 
an HPC because there are limited resources on the login nodes that are dedicated for 

HPC login, light file managements, code editing, and job submission only 12. We should 

download the FASTQ files or conduct any other intensive computation on the compute 

nodes. To this end, we first need to request compute node resources because you are on 

the login nodes when you log in to your HPC.  
 

There are many different resource managers. Here we use the free open-source and most 

dominant resource management system SLURM (Simple Linux Utility for Resource 

Management) 13, 14. Since this downloading is not a very heavy job, we can try to request 
an interactive job using the srun command. If your HPC uses other software for resource 

management (e.g., Portable Batch System, OpenLava, LoadLeveler, and others), you 

may need training from your HPC team or study the related tutorials. Upon allocation 

of the compute resources (nodes, CPUs, time, memory, and others), the application 

scripts discussed here are the same regardless the resource management systems used.  
 

srun --cpus-per-task=2 --mem=10G --partition=express --pty /bin/bash 

 

The above code will generate a pseudo terminal interface on which you can work on 

compute nodes with the allocated resources (Figure 9). On the compute node, you can 

work like on the login node, but you do not consume the resources specified for login to 

HPC by all users. In the above code, we request 2 CPUs (using the one-letter option of 

-c or the equivalent word option of --cpus-per-task), 10 G of minimum memory (using 
the option of --mem), and the express partition. You can also use the --mem-per-cpu 

option to request memory per CPU. The two options --mem and --mem-per-cpu are 

related but different. In the latter case your total minimum memory (defined by the --

mem option) is the product of memory/CPU and the number of CPUs. Please note that 
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the partition names on your HPC are likely different from that of Cheaha. The --pty 

option means initiating a pseudo terminal. The /bin/bash is a srun command, which 
means your codes will be interpreted by bash. You may just call, srun --pty bash, and 

this will bring you to the psedoterminal bash shell with the default amount of compute 

resources. After you run the above code, you will see you are not on your login node 

anymore and the prompt will change from the login node (kejinhu@login004 in my case) 

to a compute node (kejinhu@cNNNN in my case) (Figure 9).  
 

To exit the pseudo terminal, you just call the command exit. When you run the exit 

command you give up your allocated compute resources even though it is before your 

requested time limit. Or you can use the scancel SLURM command. To do this, you 

need to find out the job ID first using, echo $SLURM_JOB_ID, and then scancel 
NNNNNNNN (the job ID you identified by the echo command). The job ID can also be 

found using, squeue -u kejinhu (your username of HPC; the -u option means user). 

Please note that if you just click the tab on the web interface to close the pseudo terminal, 

you are still holding the srun resources. You need to use the exit command to give up 

the compute nodes you have requested using srun. The exit command just gives up the 
compute nodes, and you go back to the login nodes. You need to call exit again to leave 

the login terminal if you want.  

 

To see the basic information about a SLURM job including the number of CPUs, and 
memory allocated, you can use the syntax below,  

 

scontrol show job [job ID#] 

 

When you simply request compute node resources for interactive tasks using srun --pty 
/bin/bash, or even srun --pty bash, Cheaha allocates one CPU from one node, and 1G of 

memory, at the express partition with a maximum wall time of 2 hours, by default. This 

resource is sufficient to download the 7 RNA-seq samples using the fasterq-dump 

command. My experience is that you should allow 1 minute to download 1 G of RNA-

seq data using the fasterq-dump command with the srun-requested resources on Cheaha 
by default. The command fasterq-dump is faster and simpler to use than the old fastq-

dump. The --time option can be used with srun to require more time (> 2 hours).  

 

Once compute nodes are allocated to you, you can find out the information about the 

nodes using the lscpu command. The command nproc --all will print out the number of 
processors on the allocated nodes. You can find out the node names that assigned to you 

using the hostname command. Of course, you can also use these three commands to find 

the information about the login nodes. But you use scontrol show job [job ID#] to find 

out the resource information allocated to you as introduced above.  
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2.6.2 Download and convert SRA files in two steps (faster procedure) 
 

With the requested resources using the SLURM command srun, we can download the 

files on the compute node in interactive mode (Figures 9 and 10), 
 

module spider sra  

  

 module load SRA-Toolkit  # If you have loaded the package on the login nodes 

the information is passed to the compute nodes you have just requested using srun, 

and you do not need to re-load the package again on the compute nodes.  

 

cd /data/user/kejinhu/RNA_seq_tutorial/fastq_files/   # Please note that 

you are in the directory where you run the srun command. If this directory is not 

Figure 9. Download SRA files using prefetch on the compute nodes in interactive mode. 

Please note that the operation is on the c0198 compute node (kejinhu@c0198, yellow 

underline), not on the login node (kejinhu@login004, red underline). Yellow texts 

marked with a # are description of the codes. We run prefetch in the directory of 

fastq_files (green underline) because it is in the interactive mode. In the interactive mode, 

you can see the downloading progress report on your screen (red vertical line). 

# Request resources

# Change directory to the RNA_seq_tutorial directory
# Load the SRA-Toolkit

# List the files and subdirectory of the working directory

# Downlaod the SRA files using prefetch

# Print out the working directory

# Go to the destination directory, fastq_files
# Print the path to the working directory

Progress reports 

as standard output 

for the 7 downloading 
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what you want to work in, you should change your directory to the one you want 

using the cd command.  
 

prefetch SRR10203569 SRR10203570 SRR10203571 SRR10203572 SRR10203573 

SRR10203574 SRR10203575  # It took only 4 minutes to download the 7 SRA files 

using the prefetch command with the default resources on Cheaha (1 CPU, 1G of 

memory). However, the time will vary depending on the time of downloading. On 

weekend, it may be faster and in the peak times it may take longer.  

 
fasterq-dump SRR10203569 SRR10203570 SRR10203571 SRR10203572 

SRR10203573 SRR10203574 SRR10203575  # To convert all the 7 SRA files here 

into FASTQ files, it took 15 minutes only using the Cheaha default resources (1 CPU, 

1G memory on Cheaha). Therefore, using the two-step procedure the total wall time 

is 17 minutes vs 36 minutes using the one-step procedure (see below). The wall time 

is cut by half at least. At this step you can simply convert all SRA files into FASTQ files 

using a short code with the wild card, fasterq-dump SRR* since you have 

downloaded the SRR files onto your HPC already (Figure 10). But in the one-step 
download using the command fasterq-dump (below), you cannot use any wildcard 

with the access codes. Also, you cannot use the wildcard for the command prefetch 

at the previous step because SRA repository uses SRR for all entries.  
 

2.6.3 Convert the downloaded SRA files using multiple threading 

 

The SRA-Toolkit command fasterq-dump supports multiple threading. This means it 

can use multiple CPUs to conduct the calculation of divided portions of the job 
simultaneously. However, when we request compute node resources using the default 

setting for resources, srun --pty /bin/bash we are given one CPU only. But the default 

threading for the command fasterq-dump is 6 (i.e., --thread=6, or -e 6). Therefore, we 

can speed up the conversion by requesting more CPUs from the clusters.  Let us try, 
 

srun –cpus-per-task=6 --pty /bin/bash  

 

Then, we use the same code as follows, 
 

fasterq-dump SRR10203569 SRR10203570 SRR10203571 SRR10203572 

SRR10203573 SRR10203574 SRR10203575 

 
With 6 CPUs (the default value for the -e option) and the same fasterq-dump code, now 

it takes around 4 minutes only to convert all the 7 files (vs 15 minutes with one allocated 

CPU).  
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We can even shorten the time by requesting more CPUs than the default number of 

threads for the fasterq-dump command (--thread=6) and increasing the threading at the 
same time, 

 
srun --cpus-per-task=12 --pty /bin/bash  # This script requests 12 CPUs with 

other resources as default.  

 
fasterq-dump -e 12 SRR10203569 SRR10203570 SRR10203571 SRR10203572 

SRR10203573 SRR10203574 SRR10203575  # This code uses 12 CPUs for the 

conversion job. The code can be shortened as fasterq-dump -e SRR* 

 

By requesting 12 CPUs (--cpus-per-task=12) and defining 12 threading (-e 12, or --
thread=12) in the above codes, now it takes 2 minutes only to convert the 7 samples.  

 

At this point, you have 7 subdirectories, and 14 FASTQ files which are located outside 

their original subdirectories inside the parent fastq_files directory. you can remove the 

7 sub-directories since we will no longer need those files in the following analysis steps, 
  

rm -r SRR10203569 SRR10203570 SRR10203571 SRR10203572 SRR10203573 

SRR10203574 SRR10203575  # Please note that you need to use the -r option to 

remove the directories and their contents, i.e. the SRA files. You can simply remove 

all the 7 subdirectories using a wildcard, that is, rm -r SRR*. Please note that this 

short code will also remove all the converted FASTQ files whose file names start with 

SRR as well. A wildcard denotes any character in a bash string.  

 

2.6.4 download and convert SRA files in one step (slower procedure) 
 

In fact, you can download and convert the SRA files at one step using the SRA-Toolkit 

fasterq-dump command, but many persons prefer the procedures of two steps described 

above because experience indicates that it is slower and unstable. Before practicing one-

step downloading, let us first remove the FASTQ files that have been downloaded and 
converted in two steps introduced above if we did not use the short code rm -r SRR* to 

delete files/directories in the last step introduced, 

  
rm *.fastq  # Using a wildcard like this, we can delete all the files with the same 

file extension of “.fastq”regardless the length of a file name.  Use the ls command to 

confirm that the FASTQ files are deleted. If you have used the code of rm -r SRR* to 

delete the subdirectories you do not need this step because the FASTQ files shre the 

same SRR element, which is covered by SRR*.  

 
fasterq-dump SRR10203569 SRR10203570 SRR10203571 SRR10203572 

SRR10203573 SRR10203574 SRR10203575   # This code downloads and 

converts the SRA files into the FASTQ files at one step even though there are no 
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pre-downloaded SRA files on your local HPC using the prefetch command. When 

you do not download the SRA files using prefetch beforehand you cannot use the 

wildcard * to download the SRR files. You need to specify all the entry codes in one-

step downloading using the fasterq-dump command. Now, use the ls command to 

confirm that the files have been downloaded and converted.  

 

For the one-step procedure, Cheaha took around the same amount of time to 

download and convert the 7 SRA files when I requested 10 CPUs and 10 G of 

memory versus 1 CPU and 1G of memory although the default threading for the 

fasterq-dump command is 6. In both cases, Cheaha used around 36 minutes to 
download these 7 RNA-seq from the repository with the command fasterq-dump 

for one step downloading. 
 

2.7 Upload FASTQ files onto HPC by other means 
 

# List the 7 subdirectories 

# Go to one of the subdirectories

# List the .sra file inside the current subdirectory

# Come back to the parent fastq_files directory
# Check you are in the fastq_files directory by listing its conents

# Request interactive resources

# Load the SRA-Toolkit module

# Convert the downloaded SRA files to FASTQ files 

using the fasterq-dump command

On-screen progress reports of the 7 conversions

# Go to the 
fastq_files directory

On-screen progress reports

Output of the ls command

Figure 10. Convert the downloaded SRA files to FASTQ files using the command of 

fasterq-dump on a compute node. Red underline, login node; yellow underline, compute 

node. Yellow texts are description of scripts or command outputs added by the author. 
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You can also transfer your raw FASTQ data onto HPC using the command wget, rsync, 

Globus, FileZilla, rclone, or other means depending on where your source FASTQ files 
are located. The sequencing facility and your HPC platform may prefer a specific type 

of tool, for example, the Cheaha team recommends Globus. Seek help from the 

sequencing facility or your HPC team if you need assistance at this step.  

 

Globus and FileZilla are very intuitive and easy to use without the need of coding (or 
commands). Audiences would take no time to master the technique of data transfer using 

FileZilla or Globus since those both are graphic interfaces. As an example, Figure 11 

depicts how to transfer data between local iMAC and HPC using FileZilla.  To connect 

to your HPC using FileZilla, you just need the host name (HPC as your host in this 

tutorial), your HPC username, your HPC account password, and the SSH port number 
(highlighted in yellow shading in Figure 11). The default port number is 22, but it may 

be redefined. If 22 would not the port number, you can ask your HPC support team. 

After providing values for these parameters, you just click the Quickconnect button (the 

blue button in Figure 11) to connect to your HPC (remote site, highlighted in red ellipse 

in Figure 11). The transfer is very simple. You just select the files/folders from the 
source storage (the directories and files shaded in blue in Figure 11) and drag them to 

the destination storage (Figure 11).  

22

Select the folders/files in the source 

storage and drag to the destination

Selected source files

on-screen progress reports

Figure 11. FileZilla as a tool for data transfer between local (your computer) and remote 

HPC storage (both shaded in red ellipses). Shaded in yellow are parameters you need to 

define (host name, username, port, and password). Red texts are the author’s description. 

Shaded in blue are the folders and files to be transferred. 
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Summary of Chapter 2 
 

• The commands module spider and module avail can be used to find out installed 

modules on HPC with a syntax of module spider [module name]. The module 

name with these two commands is not case sensitive and can be incomplete.  

 

• The command module load can be used to load a software to run with a syntax 

of module load [module name].  The module name with this command is case 

sensitive, and should be given in full except for the part of version number.  

 

• There are different tools for transferring RNA-seq raw data to HPC depending 

on where your raw data are located.  

 

• SRA is the repository for the RNA-seq raw data, and SRA-Toolkit is the designed 

software to download SRA data using the prefetch command and then convert 

the downloaded data into FASTQ files using the fasterq-dump command.  

 

• The SRA files can be downloaded and converted at one step using the fasterq-

dump command, but the two-step procedure is faster and more reliable. The data 

transfer process can be optimized using the multiple threading option of the 

fasterq-dump command. The default threading (-e or --threads) is 6 CPUs, and 
12 CPUs usually take no time to be allocated from a good HPC cluster.   

 

• FileZilla and Globus are two simple interfaces for data transfer between HPC and 
other storages since those are graphic interfaces.  

 

• Data transfer between HPC and other storages should be done on the compute 

nodes, not the login nodes.  
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3.1 Conduct QC of RNA-seq data as an interactive job on a compute node  
 

Once you have your RNA-seq FASTQ files in the fastq_files directory of your HPC 

account, the first thing you do is to examine the quality of the raw RNA-seq data. This 

can be done using FastQC. FastQC is widely used, and likely available on your HPC. 

To QC your RNA-seq data in FASTQ format, we can request computational resources 

on a compute node for interactive tasks using the command srun introduced in Chapter 
2 already since QC is not a heavy job. 
 

srun --pty /bin/bash  # This requests the default resources from compute nodes 

for interactive operation. We will request for more resources with resource options 

when we run a heavy computing job. In that case, we would better use the sbatch 

command of SLURM (see below). Please note in the interactive mode on compute 

nodes requested by srun, you will lose the resources if you close the pseudo terminal 

using the exit command. For a light job, the default resources may be more than 

you need. You should exit the compute node when you will no longer use it so that 

others can use it. You need to use the sbatch command to submit a non-interactive 

job.  

 

To check if FastQC has been installed on your HPC, use the module spider or module 

avail command, 
 

module spider fastqc   # This command lists all the versions of FastQC installed on 

your HPC. The module name here is not case sensitive, which avoids fusses since 

one is usually not sure about the exact letter case of a module name. The command 

module avail gives you similar information as module spider does. You can also find 

the list of FastQC package versions using incomplete package names with these two 

commands, for examples, module spider fastq, or module avail fast.  

 

Now, you can load the FastQC module/software using the command module load, 
  

module load FastQC  # This loads the FastQC module/software onto the nodes 

allocated to you. Please note that unlike the commands of module spider and 

module avail the module name (i.e., FastQC here) is case sensitive when you use the 

command module load. You can also explicitly load a FastQC version by specifying 

the entire version information: e.g., module load FastQC/0.11.7-Java-1.8.0.74. You 

can call module avail fastqc after loading it, and you will see which version has been 

loaded. The loaded version is indicated by an “L”. When you do not include the 

version code the default version is loaded. The default version is indicated by a “D” 

when you output the list of versions of a module using “module avail”.  

 

To find out the module version and retrieve the online help page, issue, 
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fastqc --version  # This command lists the version of the loaded FastQC using 

the option of --version. Please note that “fastqc” here in this command is all in lower 

case. Otherwise, you will have a message like: “bash: FastQC: command not found” 

in the case you call “FastQC --version”. 

 
fastqc --help   # This displays brief information about the FastQC 

command fastqc using the option of --help. Please note that “fastqc” here in this 

command is all in lower case because the command fastqc is all in lower case (see 

below). 

 

A good practice is that you save the QC results in a specified directory, fastQC_results, 

and this avoid cluttering the fastq_files directory by the many resulting QC files and 
subdirectories. Make such a subdirectory under the directory of fastq_files using the 

Make Directory command mkdir, 
 

mkdir fastQC_results # You directly use this command when you are in the 

fastq_files directory already. If not, use the command pwd to find out your location, 

and then use the command cd to move to the fastq_files directory. Alternatively, you 

can provide the relative or full path to the new directory you are making. For example, 

you can make a subdirectory of test1 inside the newly generated fastQC_results 

using a relative path, mkdir ./fastQC_results/test1, or a full path, mkdir 

/data/user/kejinhu/RNA_seq_tutorial/fastq_files/fastQC_results/test1. The ./ (dot 

slash) here denotes the current directory. 

 
ls  # Using the list command ls, you can see the newly generated directory of 

fastQC_results within the directory of fastq_files. 

 

You can QC a single file using the syntax below, 
 

fastqc myRNAseq_file1.fastq --extract -o fastQC_results   # e.g., you 

can QC the file SRR10203569_1.fastq in this tutorial: fastqc SRR10203569_1.fastq --

extract -o fastQC_results. For description of the options for the command of fastqc, 

see comments in the next script below.  

 

You can use a single and short code below to QC all the FASTQ files inside the 

fastq_files directory, and save the QC results into the subdirectory of fastQC_results, 
 

fastqc *.fastq --extract -o fastQC_results/  # The --extract option has no 

value and means the zipped output files will be uncompressed in the same directory 

after they have been created. If you do not use the --extract option you will see the 

zip and the HTML files only. In this case, you will uncompress the zip files using the 

command of unzip. In the non-interactive mode, --extact is the default option. The 

-o option specifies the directory in which the output files will be saved, and it is the 
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one-letter version of the --outdir= option. The output directory for the -o option 

need to be pre-defined and the fastqc command cannot generate the 

fastQC_results directory itself. When the output directory is not pre-defined you will 

see “Specified output directory, ‘fastQC_results' does not exist”in the .out file. When 

you choose the long or word version of the --outdir= option, you use --outdir = 

fastQC_results instead. You can and may not include / in the option -o 

/fastQC_results. You can issue the fastqc --help command to see the usage of the 

--extract and -o options.  

 

When you run the above codes in the interactive mode on a compute node, you may 

see the computing progress information on your terminal as shown in the Figure 12. 

 

3.2. Submit QC work as a non-interactive job using the sbatch command 
 

When you submit a job to the compute nodes using the srun command, you usually stay 

on the computing screen until the computing is completed. It is not convenient when the 

process takes a long time; or you conduct the same operation for many samples 

(repetitive jobs). We can submit a long or repetitive job using the sbatch command and 

immediately work on other light tasks on the login node, or you can even shut down 
your desktop after submission of a non-interactive job. To do this, we make a SLURM 

script file first and subsequently submit the file using the following simple syntax, 
 

sbatch my-slurm-script-file-name.slurm  # The job script file usually uses the 

extension of .sh, standing for bash. In this tutorial, the author prefers the file 

extension of .slurm since it is more informative.  

 

# Go to the fastq_files directory
# List the contents of the current directory

# Request resources

# Make the directory of fastQC_results
# Conduct QC for data of all the FASTQ files

On-screen reports of the calculations

Status of the resource allocation

Figure 12. Conduct QC of the RNA-seq raw data using the fastqc command of the 

FastQC software. The job is conducted in interactive mode established using srun. 
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Using the QC  computing as an example, we can prepare a SLURM script in the Linux 

nano text editor. Open nano editor with a file name of fastQC-RNAseq.slurm (Figures 
13 and 14), 
 

nano fastQC-RNAseq.slurm  # This takes you to the nano text editor, and you can 

prepare your script there. For the usage of nano text editor, you can use the Linux 

manual function (man), man nano; or audiences can read the online tutorial about 

it (https://www.nano-editor.org/ . You can find the online manual or the PDF version 

via the Documentation tab on the nano home page). 

 

In the nano text editor, prepare the following script or a similar one (Figure 13), 
 

#!/bin/bash 

#SBATCH --time=02:00:00   

#SBATCH --partition=express 

#SBATCH --nodes=1 

#SBATCH --cpus-per-task=1 

#SBATCH --ntasks=1 

#SBATCH --mem-per-cpu=5G 

 

module load FastQC 

 

fastqc /data/user/kejinhu/RNA_seq_tutorial/fastq_files/*.fastq --extract \ 

-o /data/user/kejinhu/RNA_seq_tutorial/fastq_files/fastQC_results 

 

There are two basic parts in the bash script above (also see Figure 13). First, we should 

specify the resources needed for the non-interactive job. This is called the SLURM 

directives section. The resource options include partition category, number of tasks, 
number of nodes, number of CPUs, wall time, and minimum memory for each CPU (--

cpus-per-task) or for the job (--mem=). In the above code we request 1 CPU within one 

node, 5 G of memory per CPU with the short partition for up to 2 hours of time for 1 

task. The SLURM directives section may define other auxiliary features of the file, for 
examples, options of --mail-type=, --mail-user=, --error=, --out=, --chdir=, --job-name=, 

and others (refer to Sections 4.3 and 4.4, and Figures 23 and 25).  

 

Second, you need to write codes for the specific computation (in the current case, codes 

for QC of the RNA-seq data in FASTQ format using the software of FastQC). This 
second part is called the job command section. Please note that you need to include a 

code for loading the software/module before the application codes using the command 

of module load (see codes above and in Figure 13). If you want a command line to 

continue in a different line, you can use the backslash operator \ to break a long 

command line into 2 lines as used in the above code for the fastqc command (in Figure 
13) (see more notes about using a long command line in nano text editor in Section 4.3). 

https://www.nano-editor.org/
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After the script is written, you can save it as instructed at the bottom of the nano text 

editor, i.e., using the key combination of “control” and “O” (bottom of Figure 23). Then 

you can exit the nano text editor using the key combination of “control” and “X” (bottom 
of Figure 23). 

 

In the directory the script file is located (i.e., fastq_files directory here), submit the job 

using the sbatch command (Figure 14), 

 
sbatch fastQC-RNAseq.slurm   # Please note that this code submits the job 

under the directory where the fastQC-RNAseq.slurm file is located. If you submit it 

from any other directory, you should include the path to this script file. The SBATCH 

script file could be in a directory different from the FASTQ data directory. When you 

put and submit the SLURM script file in the directory where the FASTQ files are 

located as we do here, you can shorten the paths for both the input and output files 

in the bash script as, fastqc ./*.fastq --extract -o ./fastQC_results. The dot “.” denotes 

“current directory”, which is the directory the script file fastQC-RNAseq.slurm is 

submitted. However, if your script file is in another directory, you should not use this 

short code and need to specify the full paths. Please note that the working directory 

is where you submit the SBATCH script file not where it is located. Using the above 

code, it took Cheaha around 29 minutes to complete the QC process for the 14 

FASTQ files in this tutorial. There was not much improvement when the CPU was 

increased to 14 (i.e., --cpus-per-task=14) because fastqc still uses one CPU when 

the --thread option is not defined (see next section below for multiple threading). 

The working directory of the SBATCH script file can be defined using the option of 

--chdir (see Section 4.3 and Figure 23). When defined by the --chdir option, the 

working directory is not affected by where you submit the script file.  

 

Scripts for requesting resources

# Use shebang (#!) to define that bash is the interpreter for excution of the script

# Load the FastQC package

# FastQC codes/scripts

Continuation 
operator

Figure 13. Write scripts in the nano text editor for a SBATCH file. This example is a 

SBATCH file for the fastqc command. The file name is displayed on the upper-right corner 

of the nano text editor. Please note that the number of CPUs is not optimized in this code 

and only one CPU was used for QC with this fastqc code (see text for detail). Refer to Figure 

23 as well. 
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3.3 Speed up QC using the multiple threading option -t of the fastqc command 

 

The above code to QC the RNA-seq with the FASTQ files uses one CPU only even 

though you request 12 CPUs. The fastqc command allows multiple threading with the 

option of --thread or -t. In this tutorial, we have 14 FASTQ files, and therefore we give 

the -t option a value of 14 and request 14 CPUs. With this new code, Cheaha spent 2 

minutes and 53 seconds only to QC the 14 FASTQ files. Please note that you need to 

request 14 CPUs when you choose --thread=14 for the fastqc command. Otherwise, 

there is no improvement in speed. Please also note that unlike the multiple threading for 

the STAR command, the multiple threading for the fastqc command is at the sample 

levels that means the 14 FASTQC files are processed simultaneously. For the STAR 

multiple threading, it is at the data level which means the data of each sample are divided 

into multiple portions and are processed simultaneously (see Chapters 4 and 5).  
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3.4 Submit your computation work (QC job as an example) via the web Job 

Composer 
 

Your HPC may have a job composer on its web portal, which provides a graphical 

interface to your HPC.  You may make a SLURM job request for your computation 
project just by clicking the buttons and tabs (Figures 15-17). You can also write your 

batch script using the associated more user-friendly web text editor (Figure 17). Here, 

we use FastQC as an example to introduce how to submit non-interactive jobs via the 

web job composer powered by the OSC Open OnDemand.  

 
On your HPC web dashboard, extend the pulldown menu of the Jobs tab (Figure 2) and 

click on the Job Composer button on the menu to open the Job Composer interface 

(Figures 15 and 16). On Job Composer page, find the text editor pane and click the Open 

Editor (cyan button in Figure 16) to get access to the job text editor (Figure 17).  

Compose the script and click the Save button (Figure 17). When you are back to the job 
composer main page, click the Submit button, and you will see that your job statuses 

change from Not Submitted, to Queued, to Running, and finally to Completed when the 

process will be finished (Figure 15).  

 
During the computation you can go to the HPC terminal and check the status using, 

squeue -u [your HPC username] (lower part in Figure 14). After the computation you 

can see the resulting files using the ls command under the destination directory. 

Apparently, you can click some buttons at some steps of the job submission processes 

instead of using command lines, but you may find that using the command lines is more 

convenient when you become familiar with just some basic commands of SLURM.  

 

In the web Job Composer, the sbatch script is similar to that in srun and that of the 

traditional sbatch script introduced above. In the FastQC code part, the only difference 

of the SLURM code from that of the login mode or interactive compute mode is that 
you need to define the full path to the FASTQ files to be analyzed. You should define 

the path to the output file directory as well. This is because the script file is located in 

and submitted from the myjobs directory of the home directory by default, which is the 

working directory. However, you can define the working directory using the --chdir 

option in the SBATCH directives section.  
 

3.5 Review the FastQC results 
 

For each FASTQ file, you will have one subdirectory generated automatically, one 

compressed file, and one HTML file. Go to the subdirectory for one of the FastQC result 

files using the cd command. You will see that the associated subdirectory contains 4 

files and 2 subsubdirectories. The 4 files are: fastqc_data.txt, fastqc.fo, 
fastqc_report.html, and summary.txt. The two subdirectories are Icons and Images. Both 

directories contain many png files.  
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 3.5.1 Review the FastQC results using the nano text editor, or the 

generic Linux commands 
 

To do this, go to the FastQC result directory of an RNA-seq using cd, and use the nano 

command, 
 

nano summary.txt  # You can examine the results using the cat utility, i.e., cat 

summary.txt, but the nano text editor displays the output in a way that is easy to 

read. Please note that you need to open the summary.txt file with the nano text 

editor in the directory where the file summary.txt is located. Otherwise, you will open 

the nano text editor with an empty workspace. If you do want to open a file using 

the nano command from a different directory, you should include the path to the 

file, i.e., nano path_to_the_file/fine_name. For the usage of nano text editor, you can 

use the Linux manual command, man nano, or read online tutorial about it 

(https://www.nano-editor.org/ , you can find the online manual or the PDF version 

via the Documentation tab of the nano home page).  

 

You may see results like, 
 

PASS    Basic Statistics          SRR10203569_1.fastq 

PASS    Per base sequence quality        SRR10203569_1.fastq 

PASS    Per tile sequence quality        SRR10203569_1.fastq 

PASS    Per sequence quality scores      SRR10203569_1.fastq 

FAIL     Per base sequence content        SRR10203569_1.fastq 

PASS    Per sequence GC content  SRR10203569_1.fastq 

PASS    Per base N content        SRR10203569_1.fastq 

PASS    Sequence Length Distribution     SRR10203569_1.fastq 

FAIL     Sequence Duplication Levels      SRR10203569_1.fastq 

PASS    Overrepresented sequences        SRR10203569_1.fastq 

PASS    Adapter Content   SRR10203569_1.fastq 

https://www.nano-editor.org/
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Figure 15. Open OnDemand-based Web interface for SLURM job submission. The 

screenshot did not capture all the features. As you can see some processes can be done by 

clicking a button, for example, submitting a job by clicking Submit instead of using the 

sbatch command. But the web interface is not necessarily convenient for an experienced 

user of Linux and SLURM. 

Figure 16. The web composer interface showing the section for opening the web text 

editor by clicking the Open Editor button (cyan button on the lower left) rather than using 

the nano file-name command. The script contents for the selected job (the job shaded in 

blue in Figure 15) can be seen here. 



 43 

You can also review the fastqc_data.txt file in the nano text editor using the nano 

command,   
 

nano fastqc_data.txt  # The content of this file is long, and you can page down and 

up to review it.  

 

Alternatively, you can check the fastqc_data.txt file using the less command, 
  
 less fastqc_data.txt   # You can use the up- or down-arrow keys, or page up 

and page down keys to navigate along the text. To exit the text file in the less mode, hit the q key. 

The cat command can also output the file contents on the screen (try cat fastqc_data.txt), but the 

less command is better since this file is very long.  

 

 3.5.2 Review the FastQC results on HPC virtual desktop 
 

The most efficient way to review the QC results is using the HTML files, which will 

give you the graphical summaries of the QC analyses. To do this, we quickly launch the 
HPC virtual desktop from Cheaha OnDemand web portal (via the “Interactive Apps” 

tab in Figure 2). On the HPC desktop, open the terminal emulator. Then, go to the 

directory that contains the HTML file using the cd command, and run, 
 

module spider firefox 

 

module load firefox 

 

Figure 17. OnDemand web text editor. Captured is part of the text editor with the fastqc 

codes and the Save button. 
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firefox sampleName.fastqc.html  # You will see the FastQC results on the 

Firefox browser after running this code.  

 

In the simplest way, you just go to the directory of the fastQC_results via the Windows-

style File Manager on the HPC desktop interface, and then click on the HTML file name 

or icon.  
 

 3.5.3 Review the FastQC results on your desktop browser 
 

Alternatively, there is still a simple and familar way to see the QC results using the 

generated HTML files if your HPC does not have a HPC desktop interface. You can just 

transfer the HTML files onto your desktop hard drive using FileZilla or Globus. Then, 

you can open it simply by clicking on one file name of the QC HTML files.  
 

3.6 Aggregate the FastQC results of your projects using the MultiQC facility 
 

Using FastQC, you get results for each RNA-seq FASTQ file. It is tedious to examine 

all the samples one by one when your projects involve a lot of samples. MultiQC is a 

tool that generates one HTML file aggregating all the QC results based on FastQC. The 

syntax is very simple. 

 
srun --pty bash   # This will request compute resources using the default 

options. 

 

module spider multiqc  # Or, you can just use module spider multi, or 

module avail multi.  

 

module load MultiQC 

 

cd fastQC_results  # Please note that you should use multiqc command to 

aggregate the QC results within the fastQC_results directory where the compressed 

FastQC result files are located. If not in this directory, you can use cd to navigate into 

this directory.  

 

multiqc *_fastqc.zip  # This code will aggregate all 14 FastQC result files into one. 

We simply use the wild card * here to include all QC result files in the current 

directory without the need to list all the individual files for the multiqc command 

(Figure 18). 

  

ls   # This lists the files in the working directory, and you will see a new file 

in this directory named multiqc_report.html, and a subdirectory named multiqc_data 

(Figure 18).  
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You can also use the multiqc command in the immediate parent directory of the 

fastQC_results directory containing the fastqc.zip files. In this case the resulting 
multiqc_data directory and the multiqc_report.html file will be located in the parental 

directory, 
  

multiqc fastQC_results  # In this code, fastQC_results is the directory 

containing all the FastQC result zip files.  

 

Now, you can examine the aggregated QC results with the file of multiqc_report.html 

using the methods introduced above for the individual samples.  
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Summary of Chapter 3 
 

• For any job that takes more than 1 second to complete, you should do it on 

compute nodes not the login nodes.   

 

• Interactive compute node resources can be requested using the srun command.  

 

• A non-interactive job can be submitted to compute nodes using the sbatch 

command.  
 

• A computation job can also be submitted using the web composer.  

 

• FastQC can be used to summarize the quality of the RNA-seq raw data, but the 

results are outputted as individual files for each FASTQ file. 

 

• FastQC allows multiple threading, and such parallel calculation can significantly 

reduce the operation time.  

 

• MultiQC can aggregate the FastQC results and summarize the entire RNA-seq 

project in one individual graph or file.  

 

• The text file of the QC results can be reviewed using the Linux commands, cat, 
or less or the Linux text editor nano. The HTML file of the QC results can be 

reviewed using a web browser.  
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With the high-quality FASTQ data on HPC, the first critical and foundational step in the 

RNA-seq analysis pipeline is aligning the RNA-seq reads or fragments onto the 
reference genome. There are different aligners for RNA-seq data. This protocol will 

provide major procedures for RNA-seq alignment to the human reference genome using 

the ultra-fast Spliced Transcripts Alignment to a Reference (STAR) aligner, which 

outperforms other RNA-seq aligners 3, 4. This tutorial functions as a primer and presents 

the basic alignment skills. For extensive description of STAR alignment, audiences are 
referred to the protocols authored by the software developers 4.  

 

Before alignment, we need to establish the human genome indices, which is prepared 

once only and can be used for all alignments before a new release will be available or 

when your sequencing lengths are different. For preparation of reference genome indices 
of other species, the procedures below can be followed similarly.  

 

To generate human genome indices, we need the FASTA and annotation GTF files and 

the following two sections will walk you through the process for transferring human 

genome FASTA and GTF files onto HPC from ENSEMBL.  
 

4.1 Download and unzip the annotation GTF file of human genome from 

ENSEMBL 
 

We will put the GTF and FASTA files in a specified directory, humanGenomeIndex 

under the directory of /data/user/kejinhu/RNA_seq_tutorial. We make this directory first, 
 

 cd /data/user/kejinhu/RNA_seq_tutorial 

 

mkdir humanGenomeIndex  # or, you simply do it at one step by providing the 

path, mkdir /data/user/kejinhu/RNA_seq_tutorial/humanGenomeIndex. 

 

cd  humanGenomeIndex   

 

Now, download the GTF file into the humanGenomeIndex directory using the wget 

command. Go to the ENSEML website (https://useast.ensembl.org/index.html), click on 

the HTML text “Human” or the passport photo of the Michelangelo’s David. On the 

human ENSEMBL home page, click on the HTML text “download GTF” on the “Gene 

annotation” panel (Figure 19).  On the index page (Figure 20), right click on the HTML 
text: Homo_sapiens.GRCh38.105.gtf.gz (the version number may not be 105 when you 

are using this tutorial), and on the popup menu click on “Copy Link Address” (Figure 

20).  

 

Now, go back to your HPC terminal and request compute resources. Under the 
humanGenomeIndex directory type wget and paste the link after the wget command, 

and then hit the Enter key. 

https://useast.ensembl.org/index.html
http://ftp.ensembl.org/pub/release-104/gtf/homo_sapiens/Homo_sapiens.GRCh38.104.gtf.gz
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srun --pty /bin/bash  # This requests default compute resources from your cluster. 

In fact, the downloading takes less than 1 minute only.  

 

wget http://ftp.ensembl.org/pub/release-105/gtf/homo_sapiens/Homo_sapiens. 

GRCh38.105.gtf.gz  # Please note that your version number may not be 105 at 

the time you will use this tutorial. The download is very fast, and just took 6.7 seconds. 

Of course, you can just download the zipped file to your desktop by clicking the 

HTML text in Figure 20, and then transfer the file onto HPC using FileZilla or Globus 

introduced above. But, direct downloading onto HPC using wget is easier and more 

convenient.  

 

We use the .gtf file not the chr.gtf file here (see Figure 20). The chr.gtf file contains 

annotation for the assembled chromosomes only, and do not include the unplaced or 
unlocalized contigs. This agrees with the FASTA file we will download later, which 

Where to download 
the FASTA file

Where to download 
the annotation file

Where to download 
the FASTA file

Figure 19. ENSEMBL hyperlinks for downloading GTF and FASTA files. The 

respective hyperlinks are shaded and annotated by the author. 

Figure 20. Snapshot for downloading human genome GTF file from ENSEMBL. 

Captured also is the popup window menu for the HTML text of 

“Homo_sapiens.GRCh38.105.gft.gz”. Shaded in red is where the address can be 

copied onto clipboard by a click. 

http://ftp.ensembl.org/pub/release-105/gtf/homo_sapiens/Homo_sapiens.%20GRCh38.105.gtf.gz
http://ftp.ensembl.org/pub/release-105/gtf/homo_sapiens/Homo_sapiens.%20GRCh38.105.gtf.gz
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include the unlocalized contigs as well. Including the unlocalized contigs will reduce 

the counts for the ‘unmapped reads” and also avoids wrong alignment (see below).  
 

Now, use the ls command to see if the compressed file is there. You should see a file of 
“Homo_sapiens.GRCh38.105.gtf.gz” in the directory of humanGenomeIndex if the 

downloading is successful. This file is only 49 MB (Figure 21). Now, uncompress the 

compressed file using the command of gunzip, 
 

gunzip Homo_sapiens.GRCh38.105.gtf.gz 

 

After uncompressing, use the ls command and you can see the file of 

“Homo_sapiens.GRCh38.102.gtf” (Figure 21). Please note that “.gz” is missing because 
the file is uncompressed now. This file has a size of 1.3 gigabytes if you check with ls -

hl (Figure 21).  

 

After unzip the GTF file, you can see the content of this GTF file with the less command, 
 

less Homo_sapiens.GRCh38.105.gtf 

 

But the content is kind of messy when you check with the less command. You can see 

the more organized contents of the GTF file when you open it in the nano text editor, 
 

nano Homo_sapiens.GRCh38.105.gtf  # You likely find that your job is killed 

when you try to open the GTF file using nano. This is because this file is 1.3 G and 

your requested memory is only 1 G using the default options of srun. To solve this 

problem, you can request more resources. First, you cancel the current interactive 

job using scancel [job ID]. Then request more resources, for example, srun --

mem=3G --pty /bin/bash. Now, you are able to open the GTF file using nano. Be 

# Request interactive compute resources with the default resource options.

# Make the subdirectory of humanGenomeIndex.

# Go to the directory of humanGenomeIndex.

# Download the human
GTF file from ENSEMBL.

# Go to the tutorial directory.
# List files/directories in the current directory.

# List the contents of the current directory and make sure the subdirectory is generated.

# List the downloaded file and its size.

# Uncompress the .gz file using the command of gunzip.
# List the uncompressed file and its size using ls with the options of -l and -h (combined as -hl).

# Time spent 
for downloading

# On-screen progress reports for the srun command.

# List the downloaded file.

# The file size becomes much greater after uncompression, and the .gz 
file is gone.

Figure 21. Download the human GTF file to HPC and unzip it. Underlined in red is the 

login node; in yellow is the compute node. Texts after # are illustration of the scripts, 

their status, or outputs files. 
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patient when you will see a black screen. It may take a while to open this file with 

nano because of its huge size.   

 

4.2 Download and unzip the human genome FASTA file 
 

You also need the human genome FASTA files to prepare the human genome indices 

for subsequent alignment. We use the wget command to download it as well. First, we 
request compute resources using the srun command,  
 

srun --nodes=1 --cpus-per-task=10 --mem-per-cpu=5G --ntasks=1 --pty 

/bin/bash  # To demonstrate how to use the options of the srun command, 

here we request unnecessarily more resources than downloading the GTF file above 

originally considering that FASTA file of human genome is much greater than its GTF 

file. With the requested resources here on Cheaha, it took around 23 minutes 8 

seconds (on the Cheaha node c0173) to download the human genome FASTA file 

using the code below. However, when the default resource (1 CPU, 1 G of memory 

using the script of srun --pty bash) was requested it spent even less time to 

download the same FASTA file of human genome (11 minutes 26 seconds with node 

c0170; or 11 minutes 36 seconds on node c0173, upward arrow in Figure 22).  

 

Then we use the wget command to download the FASTA file of human genome. On 
any web browser, go to the ENSEMBL genome browser 

(https://useast.ensembl.org/index.html). On the ENSEMBL site: choose the human 

genome, and under the Genome Assembly pane, click the HTML text “download DNA 

sequence (FASTA)” (highlighted and annotated in the left pane of Figure 19), or you can 

click on the download thumbnail next to its HTML text; (Alternatively, in the Gene 
Annotation pane, click “download FASTA”, and in the new windows, click the HTML 

text dna/, and this will take you to the same page).  You will see a long list of FASTA 

files of the human genome, including files for each chromosome and the entire genome. 

You also have files with the repeat sequences masked by replacing the repeat sequences 
with Ns (rm files, RepeatMasked) or by marking the repeat sequences by lowercase 

letters (soft masked, sm). There are also files of “primary assembly” and “toplevel”. 

Right-click on the HTML text for the soft-masked primary assembly and choose the 

clickable “Copy Link” text on the popup menu. Go back to the HPC terminal, and paste 

the link after the wget command, 
 

wget http://ftp.ensembl.org/pub/release-105/fasta/homo_sapiens/dna/ 

Homo_sapiens.GRCh38.dna_sm.primary_assembly.fa.gz  

 

It is recommended that the human genome FASTA files are downloaded from the 

ENSEMBL database rather than NCBI or GENCODE. Linux is case sensitive, and you 

need to pay attention to the capital letters in the path. “sm” in the file name means soft 
masked, i.e., the repetitive sequences such as Alu and LINE are in lower case. It is 

http://ftp.ensembl.org/pub/release-105/fasta/homo_sapiens/dna/
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recommended that “rm”, which means “repeat masked”, files should not be used 

because it masks the repetitive sequences by replacing them with Ns. It is also 
recommended that “primary_assembly” files are used instead of the “toplevel” files. 

Soft masked version should be used for STAR since STAR allows alignment to the 

marked regions while STAR can still detect which regions are masked.  
 

After downloading, you will see the compressed .gz file in the humanGenomeIndex 

directory using the ls command with the -hl options. You will see a file of 

Homo_sapiens.GRCh38.dna_sm.primary_assembly.fa.gz, which is only around 899 
MB for the 105 version (Figure 22). To unzip the gz file, run the following code, 
 

gunzip Homo_sapiens.GRCh38.dna_sm.primary_assembly.fa.gz   # Human 

genome is huge, but the unzip process took several seconds  only on Cheaha. To 

see the unzipped files, use the ls command (you can use the long option of -l with 

ls to see the sizes of the files. The combined -lh option will give the file sizes in the 

format more understandable, i.e., human readable.) (Figure 22). You should see a 

file of Homo_sapiens.GRCh38.dna_sm.primary_assembly.fa. This file is 3 G in size. 

Please note that after unzipping, the zipped file is removed automatically.  

 

After you unzip the FASTA files, you can open it in the nano facility and review the 
FASTA file. Or, you can check it using the less command, 
 

nano Homo_sapiens.GRCh38.dna.primary_assembly.fa 

Or, 

less Homo_sapiens.GRCh38.dna.primary_assembly.fa 

 

 

 

 

 

Figure 22. Download the human genome FASTA file using the wget command, and 

uncompress it using the gunzip command. The compute node is underlined in yellow. In 

this example, both downloading (GTF and FASTA files) were completed on the same 

resource using the default options of srun since both tasks are light. Yellow texts after # 

are illustration of the Linux processes in screenshot. 

# 
Download 

the human 
FASTA file 

from 
ENSEMBL.

# On-screen progress reports 
for downloading using wget.

# Time spent 
for downloading# List the downloaded file and its size using ls with the options of -hl.

# Uncompress the .gz file using the command of gunzip.
# List the files and their size using ls with the options of -l and -h (combined as -hl).

# Outputs of “ls -hl”.

# The resulting FASTA file (zipped).
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4.3 Generate human genome indices with the default threading parameter 

 

We will submit the indexing script using the sbatch command. First, we make a SLURM 

file of STAR_Index.slurm using the nano text editor. 
 

nano STAR_Index.slurm  # This command opens the nano text editor with the 

file name of STAR_Index.slurm even though you do not have such a file name 

beforehand.  

 

In the nano text editor, prepare the following bash script to be submitted by the sbatch 

SLURM command, 

 
#!/bin/bash 

# STAR human genome indexing 

#SBATCH --job-name=genomeIndexing 

#SBATCH --partition=short 

#SBATCH --nodes=1 

#SBATCH --ntasks=1 

#SBATCH --cpus-per-task=1 

#SBATCH --time=12:00:00 

#SBATCH --mem=34G 

#SBATCH --mail-type=FAIL 

#SBATCH --mail-user=hukejin@gmail.com 

#SBATCH --error=Index.err 

#SBATCH --out=index.out 

#SBATCH --chdir=/data/user/kejinhu/RNA_seq_tutorial/\ 

humanGenomeIndex/stdout_stderr/ 

 

module load STAR 

 

STAR --runMode genomeGenerate \ 

--genomeDir /data/user/kejinhu/RNA_seq_tutorial/humanGenomeIndex/ \ 

--genomeFastaFiles /data/user/kejinhu/RNA_seq_tutorial/humanGenomeIndex/\ 

Homo_sapiens.GRCh38.dna_sm.primary_assembly.fa \ 

--sjdbGTFfile /data/user/kejinhu/RNA_seq_tutorial/humanGenomeIndex/\ 

Homo_sapiens.GRCh38.105.gtf \ 

--sjdbOverhang 50 

 

Then, submit the job using the sbatch command, 

 
sbatch STAR_Index.slurm 
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By default, STAR uses one CPU for indexing if not specified and therefore we specify 

--cpus-per-task = 1. The above code uses one CPU and 34 G of memory to index the 
human genome and spend 3 hours and 13 minutes to complete. Increasing the memory 

to 60 G did not improve the indexing speed and spent around 3 hours and 21 minutes to 

complete.  

 

4.4 Generate human genome indices with multiple threading 
 

STAR implements multiple threading, i.e., it uses multiple CPUs to conduct the same 
job. It can divide a job into multiple portions and each CPU will conduct a portion of 

the job. To this end, STAR has a --runThreadN option. The default value of the --

runThreadN is 1. Indexing of human genome is very slow, but we can increase the 

number of CPUs to speed up the indexing. Prepare a file of STAR_indexN.slurm in 

nano text editor, 
 

#!/bin/bash 

# STAR human genome indexing 

#SBATCH --job-name=genomeIndexing 

#SBATCH --partition=short 

#SBATCH --nodes=1 

#SBATCH --ntasks=1 

#SBATCH --cpus-per-task=12 

#SBATCH --time=02:00:00 

#SBATCH --mem-per-cpu=5G 

#SBATCH --mail-type=FAIL 

#SBATCH --mail-user=hukejin@gmail.com 

#SBATCH --error=Index.err 

#SBATCH --out=index.out 

#SBATCH –chdir=/data/user/kejinhu/RNA_seq_tutorial/humanGenomeIndex/stdout_stderr/ 

 

module load STAR 

 

STAR --runThreadN 12 \ 

--runMode genomeGenerate \  

--genomeDir /data/user/kejinhu/RNA_seq_tutorial/humanGenomeIndex/ \  

--genomeFastaFiles /data/user/kejinhu/RNA_seq_tutorial/humanGenomeIndex/\ 

Homo_sapiens.GRCh38.dna_sm.primary_assembly.fa \ 

--sjdbGTFfile /data/user/kejinhu/RNA_seq_tutorial/humanGenomeIndex/Homo_\ 

sapiens.GRCh38.105.gtf \  
--sjdbOverhang 50 

 

 

The first line in the above code is called shebang line, which specifies that bash will be 

the shell interpreter. We specify this by providing the path to the bash software. Shebang 

consists of # and ! with no space between them. Usually we use #!/bin/bash without 
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space between shebang and the interpreter, but spaces are allowed between #! and 

/bin/bash, and therefore #! /bin/bash will work. The second line is a comment describing 
the nature of the bash script after the SBATCH script. In Linux the pound sign # 

indicates a comment which is ignored by the bash interpreter.  Each #SBATCH defines 

a sbatch command option. Please note that there is no space between # and SBATCH. 

If there is a space, it will be treated as a comment as in the case of line 2 in the above 

sbatch script. If the --out= option is not defined, the standard output file will be saved 
as a file name of slurm-[job_ID].out.  
 

After saving the STAR_Index.slurm, exit the nano text editor and submit the job from 

any directory as follows, 
 

sbatch /data/user/kejinhu/RNA_seq_tutorial/STAR_Index.slurm   # This will 

submit the sbatch job with the script file of STAR_Index.slurm. The status of the 

submitted job can be checked using the command of squeue -u [your_user_name]. 

A PD status indicates that your job is pending, and an R status indicates your job is 

running. You can submit from any directory if you use the full path. You do not need 

to include the path if you submit it in the directory where the file STAR_Index.slurm 

is located. The STAR_Index.slurm file can be in any directory. The Log.out, 

slurm_jobID.out, and the Index.err files, and the _STARtmp directory will be saved in 

the same directory defined by the “change directory” --chdir= option of the 

SBATCH script. The resulting index files will be saved in the directory defined by the 

--genomeDir option of the STAR commend.   

 

Figure 23. Writing a sbatch script file for indexing human genome in the nano text editor. 

The nano text editor is a simple Linux text editor, and it even provides on-screen reference 

for shortcuts of some common functionalities at the bottom of your nano (shaded in green). 

In the shortcuts, ^ means the “Control” key. HPC login was achieved via SSH in this case 

(upper right, shaded in yellow). The SBATCH working directory is modified using the --

chdir option. The red texts after the red # are illustration by the author. 

# The shebang line to specify that bash is the shell interpreter
# A comment to describe the nature of the bash script file.

# Job parameters defined by

 each SBATCH option

# Load the STAR module
# STAR 

code 

(Linux 

script)
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If you have no nano on your HPC, you may use the vi or vim text editor which is 

universal but needs more specialized skills to use. One practical difference between the 
nano text editor and the Word text editor is that nano has no automatic line wrapping. 

For convenience, the long STAR command line is broken into several lines in the above 

description. But the content of the long STAR command above (with many options, and 

long values for several options) should be in one line in the nano text editor when you 

do not introduce any operator within the command. Do not use Enter key to break the 
STAR command line into several lines when the STAR a command line become too 

long because this will change the meaning of the code. There is a Justify function in 

nano i.e., CTRL + J, but do not try to use it. Your code will not run if you break one 

command into 2 or several lines using CTRL+J. If you want the command line to 

continue in a different line, you can use the backslash operator \ to break the long 
command line into 2 or more lines as used in the above code. Please note that the 

backslash should be the very last character of your script line and a hidden mistake could 

be a space after the backslash. If there is a space after \, your job will abort. You will 

receive a failure email notice in this case. You can review the standard error (with the .err 

file extension) file and troubleshoot it. Used in this way, the backslash operator means 
continued in the next line (line continuation operator). Please note that a continuation 

operator \ is used for both file paths of the GTF and FASTA files to break each long 

command line (long file names and long directory names) into two lines. Unlike 

continuation operator used between two options in this code, there is no space before 
the continuation operator \ in these two file paths because the separated parts of each 

path should constitute one string. 

 

The sbatch command is used to submit batch script to be run on your HPC. On the HPC 

terminal, issue sbatch --help to learn more about each option of the command sbatch 
such as --time, --error, --partition, and others. You can also use the manual command, 

man sbatch to get more detailed information about usage of the sbatch command. For 

the option of --mail-user, it is not necessary to use your work/institution email and your 

personal email will work. For the --partition option, please contact your HPC team 

(system administrator) to find out the available values defined for your HPC by your 
institution. You can find out the partition information by yourself using scontrol show 

partition as discussed previously. These are different from Cheaha depending on the 

capacity of your HPC. The --error option is useful in the case your codes have any bug. 

This option will generate a file containing the information about the failure. If the path 

for the --error option is not specified, the .err file will be saved where you submit the 
SBATCH file, but you can save it in any directory you define, e.g., --

error=/path/to/the/desired/directory/index.err.  

 

The working directory is the one the sbatch script file is submitted. Therefore, the 

standard output, standard error and the Log.out files as well as the _STARtmp directory 
are saved in the directory where you submit the SLURM file (working directory), not 

where the SLURM file is located. However, like the Log.out file, the standard output 
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and standard error files can also be directed to any directory if the path is given. When 

the file name of the --error and --out are not defined, they will be generated automatically 
as slurm_%j.err and slurm_%j.out, where %j is the slurm job number. The working 

directory can be defined using the --chdir option. When the working directory is defined 

by the --chdir option, you can still save the stdout and stderr files in any directory you 

define individually in the --out and --error options. The directory of the Log.out file can 

be defined using the STAR option of --outFileNamePrefix (see below).  
 

For usage of various options of the STAR command, visit 

https://github.com/alexdobin/STAR/blob/master/doc/STARmanual.pdf. You can also 

find online help, 
 

module load STAR 

 

STAR --help  # Please note that you need to load the software (STAR here) before 

you could bring about its onscreen help information or build-in manual.  

 

In the above code of genome indexing, we define the basic options of STAR command. 

For advanced options, refer to the STAR manual.  

  

--runThreadN, defines the number of cores for indexing the genome. Here, we request 

12 CPU cores. 
  

--runMode, for indexing, the value for this option is genomeGenerate. 

  

--genomeDir, define the path to the directory where genome indices will be saved upon 
generation.  

 

--sjdbGTFfile, defines the path to the GTF file and the GTF file name. Please note that 

GTF file can be in a different directory from that defined by the --genomeDir option.  

 
--genomeFastaFiles, defines the path to the FASTQ files, and the names of the FASTA 

files. Please note that FASTA files can be in a different directory from that defined by 

the --genomeDir option.  

 

--sjdbOverhang, the value for this option is the ReadLength minus one. In this tutorial, 
all read length is 51 bases. Therefore, we use 51-1 = 50. RNA-seq read length is 100 for 

many experiments, and you should use 99 in that case. The STAR manual states that 

“the default value of 100 will work as well as the ideal value”.  Please note that the read 

length for --sjdbOverhang is the mate read length as reported in the FastQC results, not 

the average input read length as reported in the mapping/alignment output file 

Log.final.out, in which the average read length is 2 (mate read length) (see below). 

You can also easily find out the sequencing read length using IGV. In the alignment 

https://github.com/alexdobin/STAR/blob/master/doc/STARmanual.pdf
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track of IGV, the read length is included in the popup text when you hover or click your 

mouse over the alignment track.   
  

Using the above requested resources, Cheaha used 31 minutes to complete the indexing 
of human genome. Increasing the threading from 12 to 24 with the same memory (--

mem=60G) shortens the operation time only to 20 minutes and 33 seconds. Indexing 

human genome requires large memory, but further increase of memory from 60 G to 

120 G with the same number of CPUs (12 CPUs) showed no benefit and spent the same 

time to index human genome.  
 

At this point, if you go to the directory of humanGenomeIndex you may see the file of 
Log.out (if the prefix is not defined using the --outFileNamePrefix option. When you 

defined the prepfix, the file name may be chosenName_Log.out). Your Log.out file may 

be in the directory where the script file is submitted if its destination is not defined. The 

Log.out file for STAR indexing can be placed in any directory if its path is defined using 

the --outFileNamePrefix option.  This file is useful since it records the version of STAR 
and the codes (parameters) used for indexing (at the beginning of the file). You can use 

nano (command is nano Log.out) to open the Log.out file and check the basic 

information. You can also see the content of the Log.out file using: cat Log.out. Please 

note that in addition to the sequence of the 24 chromosomes, you can see many 
unlocalized genomic contigs. In the GRCh38.105 assembly, there are 169 contigs in 

addition to the chromosomes and mitochondria DNA. The full list of chromosomes and 

contigs is stored in the file of chrName.txt. Make sure you have those unlocalized 

genomic contig included. Otherwise, many reads will be reported as unmapped, and 

even worse mapped to the wrong places of the genome. You will have those unlocalized 
genomic contigs if you use the primary assembly of the FASTA files. You can see the 

lengths in bp for all chromosomes and contigs by opening the file of chrLength.txt.  

 

In the directory of humanGenomeIndex, you can list all the files with ls -lh, and you will 

see the SA file is 23 G, and the Genome file is 3 G. Other files are much smaller.  
 

In the genomeParameters.txt file, you can see the parameters you have used to generate 

the human genome index.  

 

Please note that you do not need the files of Index.out, Index.err, and Log.out for the 
alignment using STAR. These files are saved in the directory where the SBATCH script 

file is submitted when their paths are not defined. The file of Log.out can be placed in 

any directory using the option of --outFileNamePrefix /path/to/the/desired/directory. 

The SLURM standard output and standard error file can be saved in any directory if 

specified in the #SBATCH --output= and #SBATCH --error= options. The 

genomeParameters.txt is needed for STAR alignment. This tutorial uses human genome 

as an example, and the audiences can generate genome indices for other species using 

the procedures here.  
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Summary of Chapter 4 
 

• The reference genome FASTA and annotation GTF files can be downloaded 

using the wget command.  

 

• We use STAR with the genomeGenerate --runMode to produce the reference 

genome indices, which is required for the subsequent alignment of RNA-seq 

reads to the features of the reference genome.  

 

• Human genome is huge, and it takes hours to index if the parameter is not 

optimized.  

 

• STAR supports multiple threading, and the indexing speed can be increased 

significantly by using multiple CPUs via the --runThreadN option.  
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5.1 STAR Alignment of one sample and multiple threading of the STAR command 

 
With the human genome indices established, we can now align the sequenced reads to 

the reference genome. This section introduces script for aligning a single RNA-seq 

sample to human genome using the STAR command with the alignReads runMode.  

 

5.1.1 General script 

 

In nano text editor, prepare the file of STAR_align_individual.slurm and save it in the 

fastq_files directory, 

 
#!/bin/bash 

# STAR alignment of an individual RNA-seq sample 

#SBATCH --job-name=STARalignment_individual 

#SBATCH --partition=express 

#SBATCH --nodes=1 

#SBATCH --ntasks=1 

#SBATCH --cpus-per-task=12 

#SBATCH --time=02:00:00 

#SBATCH --mem=40G 

#SBATCH --mail-type=FAIL 

#SBATCH --mail-user=kejinhu@uab.edu 

#SBATCH --error=align.err 

#SBATCH --out=align.out 

  
 module load STAR 

 
STAR --runMode alignReads --runThreadN 12 \ 

--genomeDir /data/user/kejinhu/RNA_seq_tutorial/humanGenomeIndex \ 

--outSAMtype BAM Unsorted \ 

--outFileNamePrefix SRR10203570 \ 

--readFilesIn /data/user/kejinhu/RNA_seq_tutorial/fastq_files/SRR10203570_1.fastq \ 

/data/user/kejinhu/RNA_seq_tutorial/fastq_files/SRR10203570_2.fastq 

 

Then, submit this file in the directory of fastq_files, 
 

sbatch STAR_align_individual.slurm 

 

In the --readFilesIn option, the FASTQ files of the two sequencing mates should be 

separate by a space. For single-end RNA-seq data you just provide one file name as the 

value of the --readFilesIn. The path to the FASTQ files can be omitted here since the 

SLURM batch file is saved and will be submitted in the same directory of the FASTQ 

files, i.e., --readFilesIn SRR10203570_1.fastq SRR10203570_2.fastq.  
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All the operation/result files will be saved in the directory where the 
align_individual.slurm file is located and submitted. You can add a path to the --

outFileNamePrefix option if you want to place alignment files somewhere else. You can 

save the stdout and stderr files in the directory you define for the --error, --out, or --chdir 

flags (with path values).  

 
5.1.2 Increase alignment speed with multiple threading 

 

Please note that STAR allows for multiple threading, which is parallel calculations at 

the data level (for the sample level parallelism of alignment, see Section 5.3). The above 

code uses 12 CPUs as defined in --cpu-per-task=12 and --runThreadN 12. You can find 
out the alignment speed of your script using the .progress.out files of STAR alignment 

results, for example, 

 
cat SRR10203570_Log.progress.out 

 

On Cheaha HPC, for counting a single RNA-seq sample the speed roughly doubles when 

the number of CPUs doubles before 8 CPUs, and the increasement of alignment speed 

slows down after that although it still increases till 12 CPUs, but the alignment speed 
reaches plateau beyond 16 CPUs. Here are the approximate alignment speeds for various 

number of CPUs on Cheaha for aligning the sample SRR1020370,  

 
1   CPU   ~71 million reads/hour (M/h)  
2   CPUs  ~140 M/h  
4   CPUs  ~280 M/h  
8   CPUs ~540 M/h  
10 CPUs  ~590 M/h  
12 CPUs  ~610 M/h  
16 CPUs  ~630 M/h  
24 CPUs  ~630 M/h  

 
5.1.3 Submit the alignment job as an interactive job 

 

You can also directly run the above STAR code on bash terminal for alignment of a 

single sample without generating a file. To do this, you request resources first using srun, 

and run the above code on the pseudoterminal. For example, request resources using 
srun -c 12 -N 1 -n 1 --mem-per-cpu=3G --pty /bin/bash, and run the above STAR code 

directly as an interactive job. Please note that if you just request --mem=3G, you will 

see an error warning of “Bus error” after running the above STAR code because a total 

of 3G memory is too low for this work.  
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5.2 Serial alignment of multiple RNA-seq samples to the human genome  
 

Submitting alignment job one sample each time is inefficient. We can submit one 

alignment job for all the RNA-seq samples of a project at one step using a bash for loop.  

After submission of the job the samples will be aligned one after one automatically (a 

serial alignment process). The alignment/mapping job need to be submitted via SLURM 

job scheduler as a non-interactive work since this process takes a lot of resources and 
time. We can make a directory of code_log where the SLURM code and SLURM stdout 

(standard output) and stderr (standard error) files will be saved when you will submit 

the job from this directory.  
 

cd /data/user/kejinhu/RNA_seq_tutorial/fastq_files 

 

mkdir code_log   

 

nano STARserialAlign.slurm   # This opens the nano text editor with the 

file name of STARserialAlign.slurm. 

 

In nano, prepare a script file named STARserialAlign.slurm with the following code, 
 

#!/bin/bash 

# STAR serial alignment of multiple samples 

#SBATCH --job-name=STARserialAlignment 

#SBATCH --partition=express 

#SBATCH --nodes=1 

#SBATCH --ntasks=1 

#SBATCH --cpus-per-task=12 

#SBATCH --time=02:00:00 

#SBATCH --mem-per-cpu=8G 

#SBATCH --mail-type=FAIL 

#SBATCH --mail-user=kejinhu@uab.edu 

#SBATCH --error=serialAlign.err 

#SBATCH --out=serialAlign.out 

 

module load STAR 

 

for i in /data/user/kejinhu/RNA_seq_tutorial/fastq_files/*1.fastq; \ 

do STAR --runMode alignReads --runThreadN 12 \ 

--genomeDir /data/user/kejinhu/RNA_seq_tutorial/humanGenomeIndex \ 

--outSAMtype BAM Unsorted \ 

--outFileNamePrefix ${i%1.fastq} \ 

--readFilesIn $i ${i%1.fastq}2.fastq; done 
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Then, submit the SLURM file from the directory of code_log, 

 
sbatch STARserialAlign.slurm  # This submits the BATCH script in the file of 

STARserialAlign.slurm to SLURM in the directory where the file STARserialAlign.slurm 

is located. The full or relative path should be provided if the job is submitted from 

any other directory.  But, the stderr and stdout files will be saved in the submitting 

directory when their paths are not defined.  

For the SLURM part of the code, please refer to the descriptions in the genome indexing 

section (Section 4.4), and consult the online sbatch manual, 
 

man sbatch  # This brings about the online manual for the sbatch command of 

the SLURM controller. It is very long. You can directly go to the specific options used 

here by page down or up. Hit the key q to quit the help manual page. You can also 

get help information by issuing sbatch -h or sbatch --help.  

 

This code uses the bash for loop, which has a syntax of “for [variable] in [character 

string]; do [application code]; done”. In the above case, i is the variable. The character 
string provides the file names and their absolute path. When the script file 

STARserialAlign.slurm is saved and submitted in the directory where the FASTQ files 

are located the path to the FASTQ files can be omitted. In this case it can be shortened 

to “for i in *1.fastq” and other codes are the same. The wild card * here is used to 

represent the unique part of each FASTQ file name, i.e., sample names (* denotes any 
element in the string with undefined number of elements). The backslash \ indicates 

Figure 25. Screenshot of the SLURM BATCH script in nano text editor. Shaded 

in green are references of shortcuts for some nano functionalities. Red texts after 

# and vertical bars are illustration.  

# Request 12 CPUs.
# Request 2 hours of wall time. 
# Request 8G/CPU of memory (total 96G).

# Define the partition.

# The shebang line.

# Define the file names of stdout and stderr files.

# A Comment

# The bash script for 

STAR alignment ( the for loop is 

used to algn all the 7 samples

in this code).

# Load the STAR software to the compute node. 
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continuation of a command line. Please note that the continuation operator \ should 

occupy the last position of the line and there should not even be a space after it.  
 

Please refer to the STAR vignette about each option used here. The default value for the 

--runMode option is alignReads, and therefore it can be omitted here. For the --

readFilesIn option, this code defines a procedure for alignment of the paired-end RNA-

seq reads, $i and ${i%1.fastq}2.fastq. The operator % here means the substring 1.fastq 
is deleted, and in this code the deleted 1.fastq is replaced with 2.fastq. Please note that 

the two file names for the paired-end reads should be separated by a space in the script.  

 

If the FASTQ files are compressed, you do not need to decompress them, and we just 

add the option of --readFilesCommand zcat in the STAR command. The option of --
outFileNamePrefix defines the unique part of the output file names, i.e., the sample 

names. Again, we exclude the 1.fastq part (called substring) in the output file names by 

string manipulation using the % operator, which means the substring after it will be 

deleted. The output files are automatically saved in the same directory defined by the 

character string for the FASTQ source files. The location of the human index files is 
defined by the --genomeDir option. The --outSAMtype option defines the format of the 

output alignment files. The above code gives two values to this option, BAM and 

Unsorted. Please note that STAR has an internal sorting function, and you can define it 

by giving the --outSAMtype an additional value of SortedByCoordinate. Usually, the 
sorting is conducted after alignment using the SAMtools software (see below). With the 

Cheaha resources requested above, it took around 30 minutes to align the 7 samples used 

in this tutorial. On average, each alignment took slightly over 4 minutes, but the time 

for each sample may varies. Alignment is a slow process. This quick alignment is 

achieved because STAR is an ultrafast aligner with a multiple threading function. To 
achieve high speed alignment by multiple threads/CPUs, here we give a value of 12 to 

the option of --runThreadN.  This means you are using 12 CPUs to align the same sample. 

The mapping speed is recorded in the file of .progress.out and you can find it out using, 

 
cat SRR10203569_Log.progress.out 

 

5.3 Mapping multiple RNA-seq samples to genome by sample parallelism 
 

The above alignment code with a for loop map the RNA-seq samples one after one. The 

alignment time of an RNA-seq project can be further shortened using parallel calculation at the 

sample level. Parallel alignment allows mapping of many RNA-seq samples simultaneously. 

Here, I introduce sbatch array for parallelism. For an alternative method of parallel operation, 

see Section 7.3 (parallel counting of reads).  In nano text editor, prepare the following code 

with a sbatch file name of parallel_align.slurm and save it in the cod_log directory, 

 
#!/bin/bash 

# Parallel STAR alignment at the sample level 
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#SBATCH --job-name=STARalignment_parallel 

#SBATCH --partition=express 

#SBATCH --nodes=1 

#SBATCH --ntasks=7 

#SBATCH --cpus-per-task=5 

#SBATCH --time=02:00:00 

#SBATCH --mem=100G 

#SBATCH --mail-type=FAIL 

#SBATCH --mail-user=hukejin@gmail.com 

#SBATCH --error=align.err 

#SBATCH --out=align.out 

#SBATCH --array=0-6 

 

module load STAR 

 

READ1=("SRR10203569_1.fastq" "SRR10203570_1.fastq" "SRR10203571_1.fastq" 

"SRR10203572_1.fastq" "SRR10203573_1.fastq" "SRR10203574_1.fastq" 

"SRR10203575_1.fastq") 

READ2=("SRR10203569_2.fastq" "SRR10203570_2.fastq" "SRR10203571_2.fastq" 

"SRR10203572_2.fastq" "SRR10203573_2.fastq" "SRR10203574_2.fastq" 

"SRR10203575_2.fastq") 

 

STAR --runMode alignReads --runThreadN 5 \ 

--genomeDir /data/user/kejinhu/RNA_seq_tutorial/humanGenomeIndex \ 

--outSAMtype BAM Unsorted \ 

--outFileNamePrefix ../${READ1[$SLURM_ARRAY_TASK_ID]%_1.fastq} \ 

--readFilesIn ../${READ1[$SLURM_ARRAY_TASK_ID]} \ 

../${READ2[$SLURM_ARRAY_TASK_ID]} 

 

In the above codes, we use two bash variables to define the sample names, READ1 and 

READ2, each for one sequencing mate of a sample (paired-end sequencing). When 

defining a bash variable do not add any space around “=”; you separate elements/strings 

by a space but not comma nor others (see code above).  

 

We use the --array= flag with values of 0-6 (or 0, 1-6) to define 7 parallel tasks to be 

run simultaneously. Please note that the element positions for the bash array start at 0, 

not one, and therefore the array values are from 0 to 6 (not 1 to 7). The numbers of the 

variable SLURM_ARRAY_TASK_ID correspond to the number of the --array flag, i.e., 

0-6, which define the elements in the READ1 and READ2 bash array variables by 

positions. Please note that you use the same values for the --cpus-per-task and --

runThreadN flags here. The ../ in the --outFileNamePrefix and --readFilesIn options 

means the alignment and related files will be saved in the parent directory (the 

fastq_files directory), and that read the FASTQ files from the parent directory.  
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Submit the sbatch file in the directory of code_log, 

 
sbatch parallel_align.slurm 

 

When the alignment is undergoing, you can check the job status using, 

 
 squeue -u [your_HPC_account_name] 

 

From the above code, you can see the job/array ID, and you can further check the status of your 

array job using the SLURM command sacct (display job accounting data), 

 
sacct -j [array_ID] --format=jobid,jobname,start,end,state   # The -j option 

means job or job step, and the job ID number is the value. Please note that there is 

no space anywhere (around = or between values) in the option of accounting format, 

i.e., “--format=jobid,jobname,start,end,state”(see Figure 27). 

 

Please note that parallel alignment not necessarily shortens the alignment time. The above code 

started alignment of the 7 samples at the same time (shaded in Figure 27) and used less than 10 

minutes to align the 7 samples here (compare the Start and End times for all the 7 tasks in Figure 

27). However, if 2 CPUs ware used for each sample (the --runThreadN value is 2; parallelism 

at the data level), you do not see much improvement. This is because aligning individual 

samples become a bottleneck when less CPUs are used for aligning each sample. You can 

increase the thread number, but you likely wait for the resources from your HPC clusters, and 

as a result your job cannot be completed sooner because some samples may start late due to 

lack of compute resources from your HPC even though you use the array code. Therefore, we 

should balance between data and sample level parallelisms.  

Figure 27. Parallel alignments of 7 samples. Please note that all 7 tasks/alignments start 

at the same time (shaded with gray) but may end at different times. Here, task 4 is still 

running. The sacct command is shaded in red.  
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5.4 Briefly review the alignment output text files 
 

STAR alignment generates 5 files for each sample in the fastq_files directory, 

_Aligned.out.bam, _Log.final.out, _Log.out, _Log.progress.out, and _SJ.out.tab. 

The .bam files are compressed files, and others are all text files. To find the type of file, 

you can call the command of file with the syntax of file your_file_name, for example,  

 
file SRR10203575_Aligned.out.bam  # This returns file type information as “gzip 

compressed data”.  

 

file SRR10203575_Log.out  # This reveals that it is an “ASCII text” file.  

 

For the text files, you can briefly review them using the head, less, cat, or tail commands. 
For the short files (.Log.final.out), you can check with any command. For the long file, 

you can review using the less, head, or tail commands. To find out how many lines in 

each file, you can call the word count command, wc -l file_name. You can also find out 

the sizes of all files in the current directory by issuing ls -hl. As you can see that the 

BAM file is huge, and among the text files SJ.out.tab is the greatest one. Of course, for 
the text file you can examine using a text editor, for example the nano text editor. To 

open the text file in the nano text editor, just call, nano file_name, for example,  

 
nano SRR10203575_Log.final.out  # This opens the text file in the nano text 

editor. 

 

The _Log.final.out files are useful since it contains statistics of the read counts. Let us 
output one of these files using the cat command, 
 

cat SRR10203569_Log.final.out   # This outputs the mapping statistics (see 

screenshot in Figure 28) 

 

As you can see that the Log.final.out file provides many basic statistics for the alignment 

of read counts including input reads (total reads), number of the uniquely mapped reads, 
numbers of unmapped reads of different categories, statistics of reads with multiple 

matches, and others (Figure 28).  

 

Of course, you can transfer these text files to your desktop using FileZilla or Globus, 

and then review them with your desktop text editor such as TextEdit. You may not be 
able to open the text files generated in Linux environment. This issue may be solved if 

you change the file extension to .txt from .out or .tab. With the .txt extension, these files 

can be opened using Excel.  
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5.5 Aggregate the Log.out files using MultiQC 
 

In the parent directory of the fastq_files, using the following code to aggregate the 

mapping summaries for all of the samples, 
 

srun --pty bash   # This requests compute resources using the default 

options. The multiqc operation is a light work but it still needs to be conducted on a 

compute node not the login node.  

 
module load MultiQC 

 

Figure 28. Screenshot for alignment statistics in the file of 

SRR10203569_Log.final.out. 
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multiqc fastq_files 

 

The above code generates one directory, multiqc_data and one HTML file in the parent 
directory of fastq_files. There are text files inside the multiqc_data directory, one log 

file (multiqc.log), one json code file (multiqc_data.jason), one source record file 

(multiqc_sources.txt), and three result summary files (multiqc_fastqc.txt, 

mutiqc_general_stats.txt, multiqc_star.txt). The multiqc_fastqc.txt also aggregates the 

FastQC results you generated previously since the results are inside the directory of 

fastq_files. The FastQC results are aggregated even though the results are placed in a 

separate directory under the directory of fastq_files. However, there is no 

multiqc_fastqc.txt file if you do not FastQC your FASTQ files first. In this case multiqc 

aggregates the STAR mapping results only, i.e., you have the multiqc.star.txt file only 

after you run the multiqc command on the fastq_files directory without any FastQC 

results. You can examine the results in text files with the nano text editor or the cat 

commands, or you can examine them with Excel or web browser after transferring them 

to your desktop computer.  

 

5.6 Explore the BAM files using SAMtools 
 

The BAM files are binary form of SAM files, and only the latter are human readable. If 
You call head sample.bam, and it will display some messy code, or may not output 

anything at all. To see the meaningful BAM file, you should use the SAMtools utility. 

For formats of SAM/BAM files, you can refer to https://samtools.github.io/hts-

specs/SAMtags.pdf 15. 
  

# List the contents of the fastq_files directory. 

# Request interactive compute resources.

# Go to the parent directory.

# Load the MultiQC module on the compute node.

# List directory content before aggregation.

# List the directory contents after aggregation.

# Go to the automatically generated new multiqc_data directory. 
# List the files of the aggregated QC data.

# Aggregate the QC data using the command of multiqc on the compute node. 

# On-screen progress reports for the aggregation process.

# Still on the compute node, and give up the interactive compute node using the exit command.

# Back on the login node

# The aggregated QC data (underlined)

# Resulting aggregated QC files

Figure 29. Aggregate the QC results of STAR alignment. 

https://samtools.github.io/hts-specs/SAMtags.pdf
https://samtools.github.io/hts-specs/SAMtags.pdf
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module spider samtools  # When you use module spider, the module names 

are not case sensitive. But, when you use module load, it is. You can even use the 

incomplete module name when you use the command of module spider or module 

avail, e.g., module spider samto, or module avail samt.  

 

module load SAMtools   # This code loads the latest version of SAMtools. 

You can also load a defined version by providing the full module name, for example, 

module load SAMtools/1.9-GCC-6.4.0-2.28. You will see a warning when you call 

“module load samtools”because it is case sensitive. 

 

 After loading the SAMtools, you can check its version and basic functionality. Try the 

following commands, 
 

samtools --version 

 

samtools 

 

samtools --help 

 

man samtools 

 

Now, you can use samtools view to see the BAM files. Because a BAM file is huge, we 

just check the first a few rows using the pipe operator | and the head command. The pipe 

operator means using the standard output (stdout) of the first command (samtools view 

here) as the standard input (stdin) of the following command (head here), 
  

samtools view my.bam | head   # This prints out the data for the first 10 

alignments of a BAM file of your interest. You can try any of the 7 BAM files in this 

tutorial. If you just want to check the first alignment, you can define it by giving a 

value to the -n option of the head command, samtools view my.bam | head -n 1. 

From the output of this command, we can see the reference sequence of each 

alignment, which is the 10th column of the SAM file. This is another way you can tell 

what is the read length of your RNA-seq protocol. Count the length of any of the 

aligned reference sequence and it is the ReadLength value to calculate the value for 

the option --sjdbOverhang when you build the genome indices described in 

Chapter 4. 

 

The above code just gives you some of the alignments without the header information, 

and you can use the header option -h to include the header information, 
 

samtools view -h my.bam | head  # This displays the first 10 lines of the header 

information. You cannot see any alignment because the header information has 

almost 200 lines. Each chromosome or a contig occupies one line. At the end of the 



 74 

header, the STAR alignment code is included. You can see the STAR codes if you 

increase number of lines for the line option -n of the head command as, samtools 

view -h my.bam | head -n 200. The BAM file is large, and it takes much longer time 

to output the results if you use the tail command than the head command.  

 

I you want to check more of the alignment BAM/SAM files including the header, you 

can include the less command along with the pipe operator |, 
  

samtools view -h my.bam | less  # This allows you to examine your BAM/SAM 

file page by page, or line by line.  
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Summary of Chapter 5 
 

• We use the alignReads --runMode of the STAR command to align RNA-seq 
reads to features of the reference genome. 

 

• Alignment of one individual RNA-seq sample can be sped up by multiple 

threading option of the STAR command (parallelism at the data level). Multiple 

threading can double the alignment speed when the number of CPUs double till 

8 CPUs, and the increase of CPUs can further increase the alignment speed until 
you have around 12 CPUs. 

 

• A code for serial alignment of multiple samples can save you the hands-on 

time. 

 

• The alignment speed can be further increased by simultaneous alignment of 

multiple samples using a job array script (parallelism at the sample level).  
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Chapter 6 
 

 

Sort, index and visually inspect the 

aligned BAM files 
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Before we count the reads to each feature and conduct the statistics analyses, we need 

to sort and index the BAM files.  
 

6.1 The samtools sort syntax and sorting one sample  
 

To demonstrate the syntax of the samtolls sort command, we first test sorting one BAM 

file first in the interactive mode using the code, 
  

srun --pty bash 

 

samtools sort -o my.sortedByCoord.bam -O bam my.bam  # The -o option 

means writing the final output to the file with a name defined in this option rather 

than as a standard output, while the -O option defines the output file format (BAM, 

SAM, or CRAM). Please note that by default samtools sort by coordination of 

chromosome positions, and therefore we add an informative tag of sortedByCoord 

to each sorted BAM file name.  

 

6.2 Serial sorting and multiple threading at the data level 
 

When sorting all the BAM files using one script we prepare a SLURM batch script file 

named samtools_sort.slurm using the for loop in nano text editor, 
 

#!/bin/bash 

# Sorting the BAM files using samtools sort 

#SBATCH --job-name=SAMtoolsSort 

#SBATCH --partition=short 

#SBATCH --nodes=1 

#SBATCH --cpus-per-task=1 

#SBATCH --ntasks=1 

#SBATCH --mail-type=FAIL 

#SBATCH --mail-user=your.email@domain 

#SBATCH --error=sort.err 

#SBATCH --time=05:00:00 

#SBATCH --mem-per-cpu=5G 

#SBATCH --out=sort.out 

 

module load SAMtools 

 

for i in /data/user/kejinhu/RNA_seq_tutorial/fastq_files/*.bam; \ 

do samtools sort -o ${i%out.bam}sortedByCoord.bam -O bam $i; \  

done 
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In the batch job code, you should define the path to your source BAM files. The sorted 

output files will be saved in the same directory of the source BAM files using the above 
code. However, the submitting directory of the script file samtools_sort.slurm is the 

working directory. You may save and submit the script file in the directory containing 

the target BAM files and make your code shorter (just “for i in *.bam” without the path). 

After preparing the code above in nano, submit the sorting job in the directory containing 

the script file using the sbatch command, 
 

sbatch samtools_sort.slurm   # This establishes a non-interactive job for sorting 

the BAM files. 

 

In the BAM source file directory (fastq_files directory in this tutorial), you can see the 

resulting sorted files, and the temporary files of the sorted parts before merging. After 

the sorting is completed, you can see the list of the files with their sizes using ls -hl. You 
will see that the sorted BAM file is much smaller than its parent BAM file.  

 

With the requested resources of Cheaha in the above code, it took around 103 minutes 

to sort the 7 BAM files in this tutorial. Increasing the number of CPUs from one to 12 

did not improve sorting speed and need the same amount of time to sort the 7 samples. 
This is because by default samtools sort uses one CPU only. However, samtools sort 

does allow multiple threading (multiple CPUs), but you need to define it using the -@ 

or --thread option. When -@ 3, that means 3 CPUs are allowed, is defined it took around 

39 minutes to sort the 7 samples. If the --thread value is further increased to 12, Cheaha 
took around 10 minutes to sort the 7 samples. However, further increase of CPUs from 

12 to 24 for multiple threading improved the speed very little and Cheaha spent around 

8 minutes and 20 seconds to complete sorting the 7 samples.  

 

6.3 Combine parallel sorting and multiple threading  
 

We can shorten the alignment time by parallel sorting at the sample level using the --array tag. 

Prepare the following sbatch file in nano text editor with a file name of parallel_sort.slurm, 

 
#!/bin/bash 

# Parallel sorting the BAM files using samtools sort 

 

#SBATCH --job-name=SAMtoolsSort 

#SBATCH --partition=express 

#SBATCH --nodes=1 

#SBATCH --ntasks=7 

#SBATCH --cpus-per-task=1 

#SBATCH --mail-type=FAIL 

#SBATCH --mail-user=kejinhu@uab.edu 

#SBATCH --error=sort.err 
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#SBATCH --time=02:00:00 

#SBATCH --mem=50G 

#SBATCH --out=sort.out 

#SBATCH --array=0-6 

 

module load SAMtools 

 

FILE=("SRR10203569Aligned.out.bam" "SRR10203570Aligned.out.bam" 

"SRR10203571Aligned.out.bam" "SRR10203572Aligned.out.bam" 

"SRR10203573Aligned.out.bam" "SRR10203574Aligned.out.bam”  

"SRR10203575Aligned.out.bam”) 

 

samtools sort -o ${FILE[$SLURM_ARRAY_TASK_ID]%out.bam}sortedByCoord.bam -

O BAM ${FILE[$SLURM_ARRAY_TASK_ID]} 

 

The above code uses a bash array variable FILE to define the list of BAM files to be 

sorted. Please note that there is not any space around the assignment sign “=” when 

defining an array variable. The 7 tasks are defined in the --array flag. Using 1 CPU per 

task, it took <17 minutes only to complete the soring of 7 samples (vs 105 minutes by 

serial sorting using more CPUs).  
 

With the above code, increasing the number of CPUs from 1 to 2 or increasing the total 
memory from 50 G to 100 G, or increasing both all spent similar time to complete the 

sorting of the 7 samples. This is because samtools uses one CPU per task by default. 

SAMtools support multiple threading and conducts parallel sorting at the data level of a 

single file.  You can use the multiple threading option -@ to have multiple CPUs to sort 

each sample. In the above code, when you set -@ 2 (i.e., sort each sample using 2 CPUs), 
the total time for sorting the 7 samples was around 8 minutes (vs 17 minutes). Further 

increase of threads to 3 additionally improved the speed a little bit (around 5 minutes 

for sorting the 7 samples).  
 

6.4 Index the sorted BAM files using SAMtools 
 

The next step is indexing the sorted BAM files using the samtools index command. 

Indexing the sorted BAM files is a light work taking around 1 minute per sample, and 

we can use srun to submit it as an interactive job. Do not use the login nodes even for a 

work of 1 minute. It is said you can run a code/command on the login nodes only if it 

takes less than 1 second. You can index these files using the following srun SLURM 
code under the directory where your sortedByCoord.bam files are located. 
 

cd /data/user/kejinhu/RNA_seq_tutorial/fastq_files 
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 srun -c 1 -N 1 -n 1 --pty /bin/bash    # The option -N is equivalent to --

nodes; option -n is the same as --ntasks; -c is the one-letter version of the long --

cpus-per-task option. 

 

samtools index -b my_sortedByCoord.bam  # This script automatically generates 

a file of my_sortedByCoord.bam.bai in the same directory. The -b option means to 

create an index file for the BAM file (BAM Index, BAI). The -b option is the default 

and therefore you can omit it, i.e., samtools index my_sortedByCoord.bam will work 

the same.  

 

If you want to index all the BAM files in the working directory, use the for loop code 

below after you have been granted the resources requested by srun, 
 

for i in *.sortedByCoord.out.bam; do samtools index -b $i $i.bai; done   # 

the $i.bai can be omitted in this code. The -b option is the default and therefore can 

be omitted as well.  

 

When you index your sorted BAM files by submitting a batch SLURM file, you should 
specify the path to the source sorted BAM files, and the code is the same otherwise. You 

do not need to define the path if you save and submit the SLURM batch script file in the 

same directory as are the sorted BAM files. We can prepare the following sbatch 

SLURM file in nano text editor with a file name of samtools-index.slurm, which is saved 

in the same directory as the sorted BAM files.  

# Sorted 
& merged

# Sorting
# To be 
sorted

# Sorted 
& merged

# Sorted 
& merged

# Sorting

# To be 
sorted

# To be 
sorted

# Sorting has been running 
for 52′ 22″ on node c0198. 

# Monitor the sorting progress using ls command.

# Checking the sorting job status.

Figure 30. Screenshot for sorting the aligned BAM files. BAM Files of sorted, sorting, 

and to be sorted are labelled with yellow texts.  
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#!/bin/bash 

 

# SAMtools indexing of the sorted BAM files 

 

#SBATCH --job-name=BAMindexing 

#SBATCH --partition=express 

#SBATCH --nodes=1 

#SBATCH --ntasks=1 

#SBATCH --cpus-per-task=1 

#SBATCH --mem=5G 

#SBATCH --time=0:30:00 

#SBATCH --mail-type=FAIL 

#SBATCH --mail-user=kejinhu@uab.edu 

#SBATCH --error=BAMindex.err 

#SBATCH --out=BAMindex.out 

 

module load SAMtools 

 

for i in *sortedByCoord.bam; do samtools index -b $i; done 

 

Again, this code uses the for loop to conduct the repetitive tasks for different samples. 
After preparing the above sbatch SLURM file in the nano text editor, you can submit it 

using sbatch in the same directory the script file is located, 

 
sbatch samtools-index.slurm 

 

Please note that like samtools sort the samtools index command also take the --

thread (-@) option. When we increase CPU from one (default) to 24 (samtools 

index -@ 24 or --thread=24), Cheaha takes 1 minutes only to complete the 
indexing of the 7 sorted BAM files (vs 7 minutes).  
 

6.5 Briefly review the BAM files 
 

You can see the alignments (SAM file contents) for any of your BAM files using the 

samtools view command, 
 

srun --pty /bin/bash  # This allocates you with compute resources using the 

default options. When you still have resources after the indexing process, you do 

not need to request again. When you close the pseudo terminal shell window for 

the allocated compute nodes or even the dashboard window (not the browser), it 

does not give up the allocated resources. In this case, you can go back to the clusters 

via the Clusters tab on the HPC dashboard and find out the job ID using squeue -u 
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username, and then re-establish the pseudo terminal shell for the allocated nodes 

using, srun --jobid [ID#] --pty /bin/bash. If you want to give up the resources, use 

the exit command. When you close the browser (not the clusters window nor the 

dashboard window), you will also lose your compute nodes.  

 

module load SAMtools 

 

samtools view my.sortedByCoord.bam | head   # This displays the first 10 

alignments without the header information of the BAM file as a standard output in 

the SAM format. Please note that you can view the BAM and sorted BAM files using 

the samtools view command, but not the .BAI file because the .BAI file is the index 

file of the BAM file without the sequence data.  

 

If you use the header option -h for the samtools view command, you can see the header 

information of each BAM file as the SAM output. Let us display the first 210 lines of 

your BAM file in the SAM format, 
 

samtools view -h my.sortedByCoord.bam | head -n 210  # This displays on 

your screen the first 210 lines of the BAM file starting from its header information. 

As you can see, the alignment, sorting software and codes are also included in the 

header information (in the @PG lines and @CO lines). The header of a BAM file 

includes information about the entire file, such as version number (VN) of the SAM 

specification and sorting status (in the @HD line), reference sequence name and 

length (SN and LN in the @SQ lines), as well as alignment and sorting methods and 

codes. SN indicates names of chromosomes or contigs.  

 

After indexing, you can also check the alignments in a specific region of a chromosome 

using the samtools view command, 
 

samtools view my.sortedByCoord.bam 4:20100000-20180000   # This prints 

out the read alignments between 20100000 and 20180000 on chromosome 4 on 

your screen (standard output).  

 

You can view the alignments line by line or page by page using the less command in 

combination with the samtools view command, 
 

samtools view my.bam | less   # After issuing this command you can use 

the down- and up-arrow keys, or page down and up keys to view the files. You can 

view the sorted or unsorted BAM files using the samtools view command. The file is 

long, and you can exit the file and return to the shell prompt line by hitting the q 

key.  

 

You can check the simple statistics for a BAM file, 
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samtools idxstats my.sortedByCoord.bam  # This code returns a statistic table 

(standard output) on your screen (the default destination of your stdout) for the 

target file with 4 columns in the following order: reference sequence names 

(chromosome or contig IDs), sequence length, number of the mapped 

reads/segments, and number of the unmapped reads/segments.  

 

If you want to save the statistic output as a file and examine the results using other tools, 

you can use the standard output (stdout) redirection operator >,  
 

samtools idxstats my.sortedByCoord .bam > my.sortedBCoord.bam_stats  # 

This saves the stdout in the file of my.sortedByCoord.bam.stats in the same directory.   

 

6.6 Visual inspection of your alignments with IGV 
 

You can visually review the tracks of the alignments using the IGV (Integrative 

Genomics Viewer) tool. IGV is an open-source free software, which can be used on 
iMac, Windows and Linux with a web version 16-18. Your HPC may have an IGV server, 

and you can conveniently examine your BAM files without transferring the BAM files 

to your local computers. If your HPC does not have an IGV server, you can view the 

alignment using your BAM files on your desktop IGV tool. Your BAM files need to be 

sorted and indexed in order to be viewed with IGV.  
 

First, you request an interactive IGV app from your HPC dashboard (see the app list in 

Figure 34) with the default or customized resources. When your IGV resource is granted, 

launch it, and you will see the IGV app window. Click on the File tab to bring about the 
pull-down menu, and then click on the “Load from file” button. A new window interface 

pops up. Find the directory of your BAM files via the FileSystem. Go to the directory 

containing the BAM files, and select the sorted BAM file to load. Please note that your 

corresponding index file (with the .bai extension) should be in the same directory of 

your parent sorted BAM files. This will automatically create three tracks for each BAM 
file, coverage track, splice junction track, and alignment track (Figure 31).  

 

You can examine the alignment for a specific chromosome, a region of a chromosome, 

or a specific gene by specifying the chromosome, chromosome region, or a gene symbol 

in the text search box (Figure 31).  For convenience, you can define the popup text 

behavior in data panels: “Show Details on Hover”, “Show Details on Click”, or “Never 

Show Details”. You can zoom in and out the alignments using the + and – buttons at the 

top-right corner (Figure 31). You can navigate along the coordinates by dragging the 

tracks (leftward or rightward). Desktop IGV works similarly.  
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Summary of chapter 6 
 

• The aligned reads should be sorted and indexed before counting. 

 

• We use the SAMtools command samtools sort to sort and samtools index to 
index the BAM files.  

 

• SAMtools also supports multiple threading. The sorting and indexing speed can 

be enhanced by multiple threading via the option of --thread.  
 

• Indexing is fast but sorting is much slower. Sorting can also be sped up using 

bash array script. Array and multiple threading can be combined to reach the 
maximum speed of sorting.  

 

• We can use the samtools view command to briefly review the aligned BAM files.  

 

• The sorted and indexed BAM files can be reviewed visually using the IGV tool.  
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7.1 Find out the strandedness of RNA-seq data using IGV 
 

To count the reads using the htseq-count command of the HTSeq module, we need to 

define the strandedness of your sequencing method. In fact, you can find out such a 

sequencing method without asking the sequencing facility. One simple way to reveal 

sequencing strandedness is to use IGV. In the IGV alignment track (the bottom track in 

Figure 31), right click your mouse to bring about the popup menu. In the popup menu, 
bring about the “color alignment by” sub-menu and choose “first-of-pair strand”. This 

will highlight the aligned reads with two colors, each for one strand. Please note that 

you need to uncheck the “shade base by quality” and “show mismatched bases” to show 

the strand colors only. It is stranded sequencing if you see only one color for the aligned 

reads to a specific gene; it is not stranded sequencing if you see two colors in the aligned 
reads to a gene (the MYC gene as an example in Figure 31). You need to choose the 

correct version of your reference genome in IGV that agrees with the version of the 

reference genome used for the alignment process. Otherwise, the reference coordinates 

may not match the RNA-seq alignment. In this tutorial, we use hg38, not hg19 

(selectable from the box in the upper-left corner in Figure 31).  
 

7.2 Count the reads to features using the htseq-count command (serial 

counting)  
 

Counting and alignment/mapping are the two processes that are time consuming. When 

the script is not optimized, it takes more than one hour to count one file/treatment even 

on Cheaha (for example, using the regular setting of htseq-count with great resources of 

24 CPUs and 10 G per CPU, it took 20 hours and 27 minutes to count the 12 human 

RNA-seq samples with 30-40 million reads per sample. Each sample needs around 102 
minutes to count.). Therefore, you may use the “medium” value for the “partition” 

option of SLURM, and request more than one day of time (--time option) to count more 

than 10 human RNA-seq samples when the code is not optimized. Sections 7.2 to 7.4 

will introduce basic syntax of the htseq-count command and methods for efficient 

counting.  
 

In the directory with the sorted and indexed BAM files, open the nano text editor with a 

file name of HTSeq_count.slurm, 
  

nano HTSeq_count.slurm 

 

In the nano text editor, prepare the following code to count the 7 samples in this tutorial 

using a bash for loop code, 
  

#!/bin/bash 

# HTSeq serial counting 
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#SBATCH --job-name=HTSeq_Serial_Count 

#SBATCH --partition=medium 

#SBATCH --nodes=1 

#SBATCH --ntasks=1 

#SBATCH --cpus-per-task=1 

#SBATCH --mem=1G 

#SBATCH --time=14:00:00 

#SBATCH --mail-type=FAIL 

#SBATCH --mail-user=hukejin@gmail.com 

#SBATCH --error=count.err 

#SBATCH --out=count.out 

 

module load HTSeq 

 

for i in *Aligned.sortedByCoord.bam; \ 

do htseq-count -f bam -s no -r pos $i \ 

/data/user/kejinhu/RNA_seq_tutorial/Homo_sapiens.GRCh38.105.gtf > $i.count; \ 

done 

 

Then, in the directory the HTSeq_count.slurm file is located, submit the job, 
 

sbatch HTSeq_count.slurm  # It took 7 hours and 32 minutes to count the 7 

samples in this tutorial using the resources above (1 CPU, 1 G of memory). Increasing 

CPUs and memory did not improve the counting, for examples, using 12 CPU and 8 

G per CPU it took around 8 hours and 5 minutes to count the 7 samples in this 

tutorial. This is because the default number of CPUs is one and there is no data level 

multiple threading for the htseq-count function. There is a parallel counting option 

with the command of htseq-count command, but it is at the sample level. When 

using the -n (--nprocesses) option to implement parallel counting, you will have a 

single output count table with counts of each sample as a column. This will need 

different protocol/procedure for statistics analyses from that described in Chapter 8 

below.  

 

This code uses the for loop to count all the sorted BAM files with the common ending 
of Aligned.sortedByCoord.bam. The syntax of the for loop is “for variable in character 

string; do application code; done”. Here, “i’ is the variable; 

“*Aligned.sortedByCoord.bam’ is the character string. Please note that the path to the 

BAM files is omitted here because the HTSeq_count.slurm file and the BAM files are 
located in the same directory, and we will submit this job in this directory. If you submit 

the job in other directory, you should define the path to the BAM files. The resulting 

count files will be saved in the same directory of the source BAM files with an file 

extension of .count. The -f option defines the input file type, and the default is SAM. 

Here, we define -f as BAM file. The -s option specifies the strandedness of RNA 
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sequencing method and the default value is yes. Here, the sample RNA-seq was 

sequenced using non-stranded library preparation method. The -r option defines the 
sorting method, and the pos value means the BAM files are sorted by position or 

coordinates. The htseq-count command requires the index GTF or GFF files and its full 

path should be specified unless you submit the job in the directory where the GTF file 

is located. Please note that BAM index (with the .bai extension) file is needed for the 

htseq-count command, and should be located in the same directory as the corresponding 
sorted BAM files. You index the bam file using the samtools index command as 

introduced earlier. The \ is the continuation operator to break long command line into 

two lines. > here is the re-direct operator, which divert the standard output into the file 

name specified after >. Alternatively, we can use the -c (count output file) option to 

specify the count output file names.  In this case, you remove the “> $i.count” part and 
add the “-c $i.count” option for the htseq-count command.  

 

For the details about usage of the htseq-count command, you can load the HTSeq 

module and use the help option for the htseq-count command, module load HTSeq, and 

then htseq-count -h. Please note that the package name is case sensitive when you load 
HTSeq. Please check your spelling if you cannot load the HTSeq module.  

 

7.3 Simultaneous counting of multiple samples using srun 

 
Counting is time consuming. The codes in the above section use the for loop to count 
the 7 samples one after one, i.e., serial counting. Since counting of each sample takes 

more than 1 hour, the total time for counting all the samples one after one is long. We 

can shorten the total time by counting all the 7 samples simultaneously. To this end, we 

combine the sbatch and srun commands. The srun command can be used within a sbatch 

script to define job steps. Open the nano text editor with a file name of 
parallel_count.slurm, 

 
nano parallel_count.slurm 

 
Then prepare the following code in the nano text editor, 

 
#!/bin/bash 

# HTSeq parallel counting 

 

#SBATCH --job-name=ParallelCounting 

#SBATCH --partition=express 

#SBATCH --nodes=1 

#SBATCH --ntasks=7 

#SBATCH --cpus-per-task=1 

#SBATCH --mem-per-cpu=1G 

#SBATCH --time=2:00:00 
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#SBATCH --mail-type=FAIL 

#SBATCH --mail-user=kejinhu@uab.edu 

#SBATCH --error=count.err 

#SBATCH --out=count.out 

 

module load HTSeq 

 

srun -n 1 -c 1 --exclusive htseq-count -f bam -s no -r \ 

pos -c SRR10203569.count SRR10203569_Aligned.sortedByCoord.bam \ 

/data/user/kejinhu/RNA_seq_tutorial/humanGenomeIndex/Homo_sapiens.\ 

GRCh38.105.gtf & 

 

srun -n 1 -c 1 --exclusive htseq-count -f bam -s no -r pos \ 

-c SRR10203569.count SRR10203570_Aligned.sortedByCoord.bam \ 

/data/user/kejinhu/RNA_seq_tutorial/humanGenomeIndex/Homo_sapiens.\ 

GRCh38.105.gtf & 

 

srun -n 1 -c 1 --exclusive htseq-count -f bam -s no -r pos \ 

-c SRR10203569.count SRR10203571_Aligned.sortedByCoord.bam \ 

/data/user/kejinhu/RNA_seq_tutorial/humanGenomeIndex/Homo_sapiens.\ 

GRCh38.105.gtf & 

 

srun -n 1 -c 1 --exclusive htseq-count -f bam -s no -r pos \ 

-c SRR10203569.count SRR10203572_Aligned.sortedByCoord.bam \ 

/data/user/kejinhu/RNA_seq_tutorial/humanGenomeIndex/Homo_sapiens.\ 

GRCh38.105.gtf & 

 

srun -n 1 -c 1 --exclusive htseq-count -f bam -s no -r pos \ 

-c SRR10203569.count SRR10203573_Aligned.sortedByCoord.bam \ 

/data/user/kejinhu/RNA_seq_tutorial/humanGenomeIndex/Homo_sapiens.\ 

GRCh38.105.gtf & 

 

srun -n 1 -c 1 --exclusive htseq-count -f bam -s no -r pos \ 

-c SRR10203569.count SRR10203574_Aligned.sortedByCoord.bam \ 

/data/user/kejinhu/RNA_seq_tutorial/humanGenomeIndex/Homo_sapiens.\ 

GRCh38.105.gtf & 

 

srun -n 1 -c 1 --exclusive htseq-count -f bam -s no -r pos \ 

-c SRR10203569.count SRR10203575_Aligned.sortedByCoord.bam \ 

/data/user/kejinhu/RNA_seq_tutorial/humanGenomeIndex/Homo_sapiens.\ 

GRCh38.105.gtf & 

wait 
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In the above code, we use 7 srun commands to define 7 job steps, each for counting one 

sample. Please note that at the end of each job step, we use an ampersand sign & to send 
the job step to the background and the next job step can start immediately. In other words, 

the ampersand sign & removes the blocking feature of the srun command. At the end of 

the last job step, we use a wait command so that the slowest job step can be finished, 

i.e., no job steps will be canceled when the fast job steps have been completed. The 

above codes are similar to that when you request 7 individual pseudo shell terminals and 
run the htseq-count command on each pseudo terminal simultaneously. Please note that 

we use the continuation operator in each srun command because the command line is 

too long. The syntax for the htseq-count command is otherwise the same as that in the 

serial job. The --exclusive option means “don't share CPUs for job steps”. 

 
Please note that the total number of job steps (7 here) should be equal to the total number 

of tasks defined by the #BATCH --ntasks tag.  

 

Then, submit the job, 

 
sbatch parallel_count.slurm 

 

Figure 32. Parallel jobs start at the same time and run simultaneously. The start times 

for all steps are highlighted by shading. Please note that each job step may end at 

different times (see the End column). 
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You will see there is one SBATCH job ID when you issue, squeue -u [username] (Figure 

32).  Check this job using the following code, 
 

sacct -j [jobID] --format=jobid,jobname,start,end,state   # The sacct 

command is used to display information about jobs and job steps (Figure 32). The 

different values for the --format option are separated by a comma without space 

between values. The available values for the --format option can be found using 

sacct --helpformat, which returns a list of the format values. Please note that --

helpformat here is one word without space in between. The job ID option -j carries 

a value of the job number.  

 

From the output of the above code, you will see each job step has its own ID, and that 

each job step starts at the same time (the Start column of the output table) (Figure 32). 

Therefore, counting of the 7 samples is conducted simultaneously, and the SBATCH 

job can be completed in much less time (around 84 minutes vs > 8 hours using the serial 
counting). However, each job step (each sample) ends at different time (the End column 

of Figure 32). The completion time of each sample is permanently recorded and can also 

be found by listing all the count files after counting, ls -hl *.count.  

 

7.4 Run parallel counting of samples by job array  
 

Alternatively, we can use the --array flag to run parallel counting of all the samples of a 

project. Prepare the following scripts in nano text editor with a file name of 
count_array.slurm, 

 
#!/bin/bash 

# HTSeq parallel counting using array 

#SBATCH --job-name=HTSeqParallelCounting 

#SBATCH --partition=express 

#SBATCH --nodes=1 

#SBATCH --ntasks=1 

#SBATCH --cpus-per-task=7 

#SBATCH --mem-per-cpu=1G 

#SBATCH --time=2:00:00 

#SBATCH --mail-type=FAIL 

#SBATCH --mail-user=hukejin@gmail.com 

#SBATCH --error=count.err 

#SBATCH --out=count.out 

#SBATCH --array=0-6 

 

module load HTSeq 
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FILE=("SRR10203569Aligned.sortedByCoord.bam" 

"SRR10203570Aligned.sortedByCoord.bam" 

"SRR10203571Aligned.sortedByCoord.bam" 

"SRR10203572Aligned.sortedByCoord.bam" 

“SRR10203573Aligned.sortedByCoord.bam” 

“SRR10203574Aligned.sortedByCoord.bam” 

“SRR10203575Aligned.sortedByCoord.bam”) 

 

htseq-count -f bam -s no -c ${FILE[$SLURM_ARRAY_TASK_ID]}.count \ 

-r pos ${FILE[$SLURM_ARRAY_TASK_ID]} \ 

/data/user/kejinhu/RNA_seq_tutorial/humanGenomeIndex/\ 

Homo_sapiens.GRCh38.105.gtf 

 

This code uses the --array flag to define the number of parallel jobs, and the FILE 
bash variable to define the 7 samples. The SLURM_ARRAY_TASK_ID is used 

to define each sample to be counted and saved.  
 

Then, submit the file, 
 

sbatch count_array.slurm 

 
This array parallel counting and the above srun parallel counting used similar 

amount of time to count the 7 samples.  
 

7.5 Briefly review the counted results in the terminal 
 

The above htseq-count command returns one .count file for each of the BAM file. Use 

the head command to see the first 10 features of the count table (Figure 33), 
 

head SRR10203569_Aligned.sortedByCoord.bam.count  # Please note that 

the count file names are shortened (re-named) in Figure 33 (see Chapter 8 below).   

 

As you can see that the htseq-count command generates a 2-column table for each BAM 

file. The first column is the ENSEMBL ID, and the second column is the read counts 

uniquely mapped to a specific ENSEMBL ID (Figure 33).  

 
Use the tail command to see the last 10 lines of a count file (Figure 33), 
 

tail SRR10203569_Aligned.sortedByCoord.bam.count  # Please note that the count 

file names are shortened (re-named) in Figure 33 (see Chapter 8 below).   

 

You can see that at the end of the table there are summary for other categories of read 

counts, which include _no_feature, _ambiguous, _too_low_aQual, _not_aligned, and 
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_alignment_not_unique (lower part of Figure 33). Please make sure that the read counts 

for those categories are very low, and the majority of read counts are uniquely mapped 
features.  

 

You can check the entire count table using the less command, 
 

less  SRR10203569_Aligned.sortedByCoord.bam.count   # After the less 

command, you can use down- and up-arrow keys, or page-down and -up keys to 

navigate down and up the table. Instead of the less command, you can also use the 

cat command to see their contents of the count files.  

 

You can find out how many row/transcripts in a specific or all the count files using the 
wc (Word Count) command (Figure 33), 
 

wc -l SRR10203569_Aligned.sortedByCoord.bam.count  # This counts the 

number of lines for this count file. The -l option means counting the lines in the table.  

  

wc -l *.count  # This counts number of lines for each of the count files in the same 

directory. Usually, all count files have the same number of lines.  

After you transfer these count files to your local device, you can open the table using 

LibreOffice Calc (Linux) or Excel (MAC or Windows PC). If around 50% of your reads 

are in the group of no_feature when you use the default value for the strandedness option 
-s yes, your samples are likely prepared using the non-stranded library kit. The total 

aligned read counts can be found in the _Log.final.out files. In this case, you need to 

count again using the -s no option for the htseq-count command.  

 

Figure 33. Management and review of the count tables. 

# Make a directory for the count files
# Copy all count files into the directory of counts

# Go to the counts directory
# List the contents of the counts directory

# Rename the count files 
using the mv command and 
the for loop to keep the unique 
parts only in the file names

# To see the new short file names

# Count the total lines in a count file

# To see the first 10 features of a count file

# To see the last 10 lines of a count file.

# These counts should be low.

# A count table contains two columns: 
First column, ENSEMBL Id 
Second column, raw read counts 
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Summary of Chapter 7 
 

• This tutorial uses the htseq-count command to count reads to features. 
 

• Counting of reads to features is very slow.  

 

• We can use srun in a sbatch file to achieve parallel counting of multiple 

samples and significantly shorten the machine time for counting.  

 

• Bash job array can also be used to speed up counting by processing many 

samples simultaneously.  
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Chapter 8 
 

 
Analyses for differential  

 

expression using the  

 

DESeq2 R package  
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8.1 Preparation of count files on Linux HPC 
 

Each command in this section takes no time and uses very little resources, and therefore 

we may conduct such file-management work on the login node. But, it is better to start 

a pseudo terminal using srun --pty bash even for this light job. Usually, I put all count 

files in one directory called counts, using the cp (copy) command, 
 

cd /data/user/kejinhu/RNA_seq_tutorial/fastq_files  # This takes you to the 

directory where the read count files are currently located.  

 

mkdir counts  # This makes a subdirectory of counts (Figure 33). 

 

cp *.count counts  # This copies all the count files into the directory of counts 
(Figure 33).   

 

Then, go into the counts directory, 

  
cd counts 

 

Within the counts directory, we remove the common part of the count file names, i.e., 

the “_Aligned.sortedByCoord.out.bam.count” part from all count files, but keep the 

unique sample identity parts, using the following for loop in combination with the mv 

(move) command (Figure 33), 
 

for i in *_Aligned.sortedByCoord.out.bam.count; \  

do mv $i ${i%_Aligned.sortedByCoord.out.bam.count}; done  # The % sign here 

means that the substring after it will be deleted from the variable (Figure 33).  

 

Now, you can use the ls command to see the new file names in the counts directory 

(Figure 33). As you can see, the above codes shorten the file names and generate 7 new 

count file names of SRR10203569, SRR10203570, SRR10203571, SRR10203572, 

SRR10203573, SRR10203574, SRR10203575 (Figure 33). 
 

8.2 Request resources of RStudio server  
 

Bring about the pulldown menu at the Cheaha Interactive Apps tab (Figure 2) on the 

HPC web dashboard, then click the RStudio Server tab from the menu, and this gives 

you the request form (Figure 34). Click the Launch button if you will not change any 

parameters (using the default settings). You will see a queue window. After the 

requested resource is granted, click the “ Connect to RStudio Server” button, and this 
will take you to the RStudio platform.  
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For the procedure below you can do all the analyses on RStudio of your desktop if you 

do not have a HPC RStudio server. However, you need to install all the required R 
packages on your local computer. Otherwise, the procedure is very similar. Installation 

of R and RStudio is easy and straightforward, and you can seek for help from your 

institution IT personnel. For the basics of R, readers can consult some introductory 

books 8, 9, or my tutorials 6, 7. In those two tutorials I introduce some basic concepts and 

commands related to preparation of heat maps and boxplots. In this tutorial below, I will 
further introduce some basic as well as the RNA-seq related R commands.  
 

8.3 General preparation in RStudio for DESeq analyses 

 

On the RStudio console pane, you will see a prompt sign > (The prompt sign in Linux 

is $, compare Figures 32 and 33 with 35). Type getwd(), and then hit the Enter key. You 

will see your current working directory is your data home directory of your HPC account. 

In my case, it is /home/kejinhu/ (Figure 35). As you can see here, unlike Linux an R 

command (in R terminology, it is called function) uses parentheses to introduce its 
arguments (Linux terminology is options). You should use the parentheses even though 

no arguments are specified (i.e., default) as you can see here for getwd().  

 

You may see some R objects listed on the Environment pane (upper right quadrant). 
This is because RStudio will automatically load the workspace saved as a hidden 

file, .RData in the home directory. Issue ls(), and you may see R objects you generated 

previously. Please note the different formats of the list function of R ls(), and the list 

command of Linux ls. If there is no any object, you will see “character(0)” on your 

screen. If there is any object, you can find the .RData file in your home directory using 
the list.files() function, 

 

Figure 34. Request resources for RStudio server. 

# Select the RStudio Server 

from the Interactive 

Apps list
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list.files(all.files = TRUE)  # If you do not use the all.files = TRUE argument, i.e., 

list.files(), the hidden file .RData will not show.  

 

You can remove all the objects (not the files) using the following code, 
 

rm(list=ls())  # This removes all the previous objects loaded onto the memory. 

You can call ls() again, and you will see a return of “character(0)” in your console, 

and the R objects will disappear from the “Environment” pane. You can also click 

“clear workplace” under the Session sub-menu to remove all objects on the memory.  

 

The command rm(list=ls() just removes all the objects on the memory, but does not 

remove any files including the .RData file containing the objects. You can re-load this 
file again manually using the load function load(), 
  

load(“.RData”)  # This re-loads the workplace. The file may have a specific name 

with the extension of .RData if you specify it at the time of saving.  

 

ls()   # This prints on the screen the loaded R objects from the 

memory. 

 

rm(list=ls())   # Remove all the R objects on the memory again.  

 

Now, set up your R working directory to the HPC directory that contains your RNA-seq 

count data using the following code with the set working directory function setwd(), 
 

setwd(“absolute_path_to_count_directory”)   # In my case, the code is 

setwd(“/data/user/kejinhu/RNA_seq_tutorial/fastq_files/counts”) (Figure 35). Please 

note that you need to quote the path in the setwd() function. This will change your 

RStudio working directory to the counts directory. You can confirm the new working 

directory using the getwd() function.  

 

getwd()  # This prints out the path to your counts directory on your HPC. In 

my case, it is /data/user/kejinhu/RNA_seq_tutorial/fastq_files/counts.   

 

To see all the files in the working directory, issue, 
 

list.files()  # You will see a list of files on your screen. In this tutorial, you will see 

the count file names, "SRR10203569" "SRR10203570" "SRR10203571" 

"SRR10203572" "SRR10203573" "SRR10203574" "SRR10203575" (Figure 35). Make 

sure all your count files are there.  Please note that there is an “s” in the list.files() 

function. You would see a warning if you missed it.  
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8.4 Generate the DESeq2 R objects for DE analyses 
 

DESeq2 needs several R objects for the analyses depending on the pipeline you will use.  

For the htseq-count and DESeq2 pipeline, we need R objects of directory, sampleFiles, 

sampleCondition, and sampleTable. The following procedures use the generic R 

functions to generate the DESeq2 objects, but we do not need the DESeq2 package at 

this point.  

 
directory = getwd()  # This generates the directory object for later use. Since we 

have made the counts directory as the working directory, we can use the getwd() 

function to assign elements to the directory object. We can also directly generate it 

using this syntax, directory = “absolute path to the directory of your count files”. In 

my case, it is, directory = "/data/user/kejinhu/RNA_seq_tutorial/fastq_files/counts". 

Please note that you can use either = or <- assign operators. You can issue directory 

after the object is generated, and you can see the contents of the directory object, 

Figure 35. Prepare DESeq2 R objects in RStudio. The screenshot here mainly captured the 

Console pane and the other three panes (Plots/Files/Packages/Help pane, Source editor pane, 

and Workspace Browser/History pane) were largely avoided. Red texts are illustraions added 

by the author. The magenta texts illustrate the RStudio pane components. The Console pane 

can be minimized or maximized using the pane icons on the top right; the Console pane can 

be changed into a Linux terminal using the tab on the top left of the pane (shaded in red). On 

the Linux terminal pane, you can manipulate your files on the HPC using the bash commands.  

# Find out the working directory

# Set the counts directory 
as the working directory# List the path to the working directory

# List the files in the working directory

# Define the directory object

# Define the sampleFile object

# Define the sampleCondition object
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in the current case, "/data/user/kejinhu/RNA_seq_tutorial/fastq_files/counts" (Figure 

35) 

 

directory  # This outputs the content of the object directory you just generated. 

 
sampleFiles <- list.files()  # The sampleFiles object can be generated in several 

ways. You can use: sampleFiles <- list.files(directory), or use the 

combine/concatenate c() R function, sampleFiles <- c(“file1”, “file2”, “file3”, ......, 

“fileN”). Please note that if there are other files in the same directory, you cannot use 

list.files() or list.files(directory) because these will include other non-target files as 

well. However, you can generate an R vector containing the names of all the files in 

the working directory using the list.files() function first, and then remove the 

unwanted elements using the index operator [ ], sampleFiles <- sampleFiles[-c(n1, 

n2)]. Here, -n1 and -n2 are the indices (position) of the unwanted elements of the 

sampleFiles vector, and the minus sign – here means to remove these files.  

 

Let us simply generate the sampleFiles object using the R generic combine c() function, 
  

sampleFiles   # This prints the content of the object sampleFiles. 

 

rm(sampleFiles)  # This removes the sampleFiles object.  

 

sampleFiles   # You will see a warning of “Error: object 'sampleFiles' not 

found” because you just removed it. 

 

sampleFiles <- c("SRR10203569", "SRR10203570", "SRR10203571", "SRR10203572", 

"SRR10203573", "SRR10203574", "SRR10203575")  # This generates the 

sampleFiles object using the combine c() function.   

 

 

sampleFiles  # You will see you have just generated the same sampleFils object 

as does sampleFiles <- list.files(). 

  

sampleConditon <- c(rep(“BJ”, 4), rep(“ESC”, 3))   # Here, we use the 

c() function and rep() function to generate the sampleCondition object (a vector 

object). For a two-condition experiment, the syntax is sampleCondition <- 

c(rep(“treatment”, #_of_repeats), rep(“control”, #_of_repeats)). Use the help() 

function to find out information about the R functions of c() and rep(), i.e., help(c) 

and help(rep).  

 

sampleTable <- data.frame(sampleName = sampleFiles, fileName = sampleFiles, 

condition = sampleCondition)   # Here, we use the data.frame() function to 

generate the sampleTable object (a data frame object). For more information about 
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the data.frame() function, you can call help(data.frame) on the RStudio console pane 

and see the help information on the Help pane. The resulting column names may 

not be sampleName, and it can be sampleNames; and fileName could be fileNames.  

 

After generating the sampleTable data frame object, call the object sampleTable 

to print out the data frame on the screen and check if the sample names, sample 

files, and conditions match each other.  
 

sampleTable 

 

To see the basic features about the sampleTable object, use the summary() function 

(Figure 36), 
 

summary(sampleTable) 

 

Next, we categorize the condition vector of the sampleTable data frame as two-level 
factors using the factor() R function (Figure 36), 
  

sampleTable$condition <- factor(sampleTable$condition)  # Here, we use the 

$ operator to select the condition column of the data frame of sampleTable. For use 

of the factor() function, you can issue help(factor) in your RStudio console pane and 

the help page for the factor() function will appear in the Help pane.  

 

Use the summary() function again, and you will see that the condition column is 

categorized as a vector of factors, 
 

# After 
categorization

# Before 
categorization

Figure 36. Screenshot for categorization of the condition variables in the sampleTable 

data frame. Here, condition has two levels. 
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summary(sampleTable) 

 

Your RStudio consoles screen may be cluttered with the codes and outputs. You can 
clear the console screen by clicking the “Clear Console” icon (upper right in Figure 35) 

or just use the key combination of ^+L (press Control and L together). This just clears 

the displays on the console screen and has no impact on the objects on the memory nor 

the function history.  
 

8.5 Load DESeq2 package and get online help with DESeq2 
 

When the objects directory, sampleFiles, sampleCondition, and sampleTable are defined, 

you can work under any other directory since the objects are on the memory and the 

paths to the files are defined already, but for convenience we will stay in the same 

directory. Now, we need the R package DESeq2 and its related packages. Please note 

that instructions about installation of R packages are not included in this tutorial. Load 
the DESeq2 library/package using the R function of library(), 
 

library(DESeq2)  # When you load the DESeq2 library, R automatically loads 

the required packages for DESeq2 including S4Vectors, stats4, BiocGenerics, parallel, 

Biobase, and MatrixGenerics. These packages contain many objects with the same 

names as in the R base packages. Therefore, you may see warning for masking those 

objects. Do not worry about those warnings.  

 

You can find the original article about DESeq2 using the citation() function, 
 

citation(“DESeq2”)   # Please note that you should quote DESeq2 in 

this code.  

 

You can find out the version of your DESeq2 using the packageVersion() R function, 
 

packageVersion(“DESeq2”)   

Or 
package.version(“DESeq2”) 

 

For help with DESeq2, issue the following code, 
 

help(DESeq)  # Please note that there are no quotation marks around 

DESeq becuae DESeq() is an R function as defined in the DESeq2 package, and there 

is no “2” because the function name is DESeq() not DESeq2(). This is similar to display 

help documents of other R functions such as c() and factor(), you issue help(c) or 

help(“c”) and help(factor) or help(“factor”) with and without quotation marks around 

the function name in query. This will give you documentation about the function 

DESeq() in the “Help” pane of RStudio. Unlike the help(“DESeq2-package”) 
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introduced below, this call gives help documentation for the function of DESeq() only, 

but not other functions in the DESeq2 package.  

 

If you want to get help about the DESeq2 package, using, 
 

help(“DESeq2-package”)  # You will see a waring of “No documentation for 

‘DESeq2’ in specified packages and libraries” when you use help(DESeq2) or 

help(“DESeq2”). You will also have issues when you do not quote DESeq2-package 

here. You need to use help(“DESeq2-package”). When you run this help, you will 

see brief information about the package DESeq2. There is a list of the main DESeq2 

functions including DESeqDataSet(), DESeq(), lfsShrink(), and vst(). You can further 

run the ? or help() functions to find out information about these DESeq2 functions, 

e.g., help(DESeqDataSet).   

 

However, you can find function help for the DESeq2-associated functions, for 

examples, 
 

?DESeq2::counts  # Interestingly, you cannot use help(DESeq2::counts), or 

help(“DESeq2::counts”). Please note that you need to use double colon sign 

between DESeq2 and counts.  

 

?DESeq2::results  # Interestingly, you cannot use help(DESeq2::results), or 

help(“DESeq2::results”). 

 

8.6 Conduct analyses with DESeq2 

 

8.6.1 Prepare the raw DESeq data set (dds)  
 

First, we need to generate the DESeq data set (dds) for analyses. The codes for dds 

generation vary depending on how you prepare the RNA-seq count tables in the previous 

step. We have used the htseq-count command to generate the count tables, and we 
therefore use the function DESeqDataSetFromHTSeqCount() to generate the DESeq 

data set (dds) (Figure 37), 
 

ddsHTSeq <- DESeqDataSetFromHTSeqCount(sampleTable = sampleTable, 

directory = directory, design = ~ condition)   

 

You can retrieve the online help pages for the DESeqDataSetFromHTSeqCount() R 
function defined by DESeq2, 
 

help(DESseqDataSetFromHTSeqCount)  

 

Check the DESeqDataSet object ddsHTSeq (Figure 37), 
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ddsHTSeq  # You will see a summary of the results including dimension, column 

names, and some row names.  

 

At this point, you have a DESeqDataSet raw data. The count matrix of this dataset 

contains a lot of rows, and you can find the numbers of rows by calling the R function 

number of row nrow() (Figure 37), 
 

nrow(ddsHTSeq)  # This prints out the total number of rows of the count matrix. 

You can find out the number of columns using the number of column R function 

ncol(), i.e., ncol(ddsHTSeq). You can find out the numbers of columns and rows at 

one time by calling the dimension function dim(), i.e., dim(ddsHTSeq). Use the 

colnames() function to print out the list of the column names, colnames(ddsHTSeq).  

 

There are a lot of genes that are not expressed in any of the samples in your experiments. 

We can find out how many of these genes using the code below, 
 

nrow(ddsHTSeq[rowSums(counts(ddsHTSeq)) < 1 ,])   # This outputs the number 

of genes/transcripts whose total read counts in all samples are 0. This code uses a 

combination of R functions rowSums(), counts(), nrow(), and the indexing operator 

[ ]. The comma in this code means all columns in the tables will be kept. Use of R 

function combination here is similar to the pipe operator | in Linux in that you use 

the output of one command as input of another command.  

 

You may want to reduce the matrix table given that a lot of rows have a total read counts 

of zero or only one read for all the samples in the same row (a gene or a transcript). We 

are not interested in those genes without expression in both conditions. The following 

code removes all rows in which the total read counts for all samples are equal or less 

than 1 (Figure 37), 
 

ddsHTSeq_noZero <- ddsHTseq[rowSums(counts(ddsHTSeq)) > 1 ,]   # 

This generates a smaller ddsHTSeq data set, containing rows with the corresponding 

total read counts for all samples greater than 1.  Check the row and column numbers 

again by calling, dim(ddsHTSeq_noZero). You will see that the number of rows has 

been reduced significantly, but all the 7 columns are retained in the new ddsHTSeq 

data set (Figure 37).  

 

8.6.2 Set up the reference level and run the DESeq() function 
 

When conducting the differential expression analyses, you need one condition to be the 

reference, and this usually is the control condition. DESeq() will automatically choose 

the reference level alphabetically. You can define the reference level using the relevel() 
function and the ref argument.  
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ddsHTSeq_noZero$condition <- relevel(ddsHTSeq_noZero$condition, ref = “BJ”) 

 # Here, we use the human fibroblasts BJ cells as the reference. One usually 

uses the control as reference. The syntax is: ddsHTSeq$condition <- 

relevel(ddsHTSeq$condition, ref = “control”).  

 

Then you can call the DESeq() command to generate the dds object, 
 

dds <- DESeq(ddsHTSeq_noZero)  # When you run this code you will see 

the message coming out one by one on your console screen,  

   estimating size factors 

   estimating dispersions 

   gene-wise dispersion estimates 

   mean-dispersion relationship 

   final dispersion estimates 

   fitting model and testing 

 

 

When done, you can call, 
 

resultsNames(dds)  # This returns the names of the estimated effects 

(coefficients) of the model.  

 

 

 

 

Minimized Source editor pane

# total number of features after filering out the genes with no expression
# Find out the number of rows/features in the ddsHTSeq_noZero object

# Remove genes with no experssion

# Total rows/features in the ddsHTSeq object

# Find out the number of rows/features in the ddsHTSeq object

# Generate the ddsHTSeq R object using the DESeq2 function of 

DESeqDataSetFromHTSeqCount()
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Figure 37. Screenshot of RStudio pane for defining the ddsHTSeq object. It captured 

mainly the console pane with partials of the other three RStudio panes. Red texts are 

illustration by the author. R scripts/codes are in blue.  



 107 

 

8.6.3 Extract results using the results() function 
  

res <- results(dds)  # This generates a result table (stored in the result object res) 

with 6 columns: baseMean, log2FoldChange, lfcSE, stat, pvalue and padj, but does 

not include the read counts of each sample. You will use the counts() function to 

generate the count table (see below).  

 

If your conditions have more than 2 levels, you may need to use the contrast argument 

to conduct pair-wise comparisons, 
 

res_treat2_vs_control <- results(dds, contrast = c(“condition”, “treat2”, “control”)) 

  # This will extract a result table for the comparison between 

treatment 2 and the control, and store the results in the R object of 

res_treat2_vs_control. You can give any name for the result R object, but an 

informative name will be helpful.  

 

8.6.4 Briefly review the results 
 

You can use the summary() function to see the summary of the results, 
 

summary(res)   # Or, you call summary(res_treat2_vs_control).  

 

The above code returns a summary of the results. The outputs may look like this, 
  

out of 36445 with nonzero total read count 

adjusted p-value < 0.1 

LFC > 0 (up): 8323, 23% 

LFC < 0 (down): 6941, 19% 

outliers [1]: 32, 0.088% 

low counts [2]: 7773, 21% 

(mean count < 1) 

[1] see 'cooksCutoff' argument of ?results 

[2] see 'independentFiltering' argument of ?results 

 

 

You can print the content of the res object on your screen simply calling the object name, 
  

res    

 

Simply issue the res object as above will print out the abridged table with the head 

information similar to, 
 

log2 fold change (MLE): condition ESC vs BJ  
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Wald test p-value: condition ESC vs BJ  

DataFrame with 36445 rows and 6 columns 

                                  baseMean   log2FoldChange     lfcSE        stat            pvalue             padj 

                                 <numeric>   <numeric>       <numeric> <numeric>   <numeric>   <numeric> 

ENSG00000000003  1598.7341       1.329407        0.239609    5.54824   2.88567e-08    1.68287e-07 

ENSG00000000005    31.5038         8.657379       1.149997    7.52818    5.14537e-14    5.25172e-13 

ENSG00000000419  1435.7501       0.879933       0.290701    3.02694    2.47045e-03    6.67570e-03 

ENSG00000000457   298.9891      -0.929369       0.295471   -3.14538   1.65874e-03    4.65110e-03 

ENSG00000000460   430.9958       2.208751       0.354075    6.23809     4.42942e-10    3.16513e-09 

...                    ...            ...       ...       ...         ...         ... 

ENSG00000289640   0.308377        1.95779       3.76297      0.520279    6.02869e-01          NA 

ENSG00000289641   0.236623        1.69298       3.78028      0.447845    6.54265e-01          NA 

ENSG00000289642   1.037582       -3.35650      2.37325     -1.414303    1.57273e-01     2.44347e-01 

ENSG00000289643 128.914189       10.69002     1.14804    9.311529      1.26005e-20     2.10671e-19 

ENSG00000289644   0.387676        2.26137       3.73836     0.604909     5.45239e-01          NA 

 

 

When we use summary(res), statistic numbers for DE genes at the p<0.1 level are 

provided as above. We can find out how many genes/transcripts are differentially 

expressed at the padj<0.05 level (or at other levels) using a code (or similar) below, 
 

 
sum(res$padj < 0.05, na.rm = TRUE)   # Please note that there are a lot of 

NA in the columns of pvalue and padj (see the output above). You will see a message 

of “NA” if you do not remove NA in your call as in this code: sum(res$padj < 0.05). 

You can find out how many NA in the padj columns: table(is.na(res$padj)), which 

gives a table listing number of the TRUE and FALSE events. Or, you just use 

sum(is.na(res$padj)) to print out the total number of NA. You can also find out how 

many rows in the padj columns of the res data frame are non-NA using this code, 

sum(!is.na(res$padj)). 

 

Or, you can make the following call, 
 

table(res$padj < 0.05)   # This generates a small table tabulating the number 

of TRUE and FALSE for the two categories.  

 

You can see the first 6 rows/genes of your results table using the head() R function, 
 

head(res)  # Or, you can see the specified number of rows via the n argument, 

for example, head(n=10, res). This will give you a sense about differences in using 

the head command of Linux and the R head() function.  

 

8.6.5 Generate a table containing both statistics and counts 
 

The results() function generates a table of 6 columns containing the statistical data only 

without the read count data. The read count table can be extracted using the function of 

counts(), 
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count_table <- counts(dds, normalized = TRUE) 

 

To see the first 6 rows/transcripts of the count table, issue, 
 

head(count_table)  # An example of the output is shown in Figure 38. 

 

The two tables can be combined using the cbind() R function, 
 

res_count <- cbind(res, count_table)  # Or, you can generate the res_count table 

at one step combining the functions, res_count <- cbind(results(dds), counts(dds, 

normalized = TRUE)). The resulting table may look like the one in Figure 39. 

 

 

The above res_count table is an S4 object. You can also use the merge() function to 
generate the data frame object of res_count table in combination with the R function of 

as.data.frame(), 
 

res_count <- merge(as.data.frame(res), as.data.frame(counts(dds, normalized = 

TRUE)), by = “row.names”, sort = FALSE)   # This generates a list mode, 

data frame class of data. Check using mode(res_count), class(res_count). If you use 

the summary() function for res, count results (count_table), and the merged data 

frame (res_count), you will see the differences of the data format. When practice 

using this tutorial, please do not copy the code from the tutorial into the RStudio 

because the text code may mess up your R code. For example, the double quotation 

marks in your Word text or PDF text may function differently in R.  

 

To see the first 3 rows/transcripts in the res_count table, issue, 
 

head(n=3, res_count)  # See Figure 39 for the output.  

 

8.6.6 DE analyses for a sample set with multiple levels 
 

In the case, you use the contrast argument to test just some of the samples (one of the 
treatments vs controls), and you do not want to extract other samples that are not tested 

for DE, you can use the following code, 
 

                 SRR10203569 SRR10203570 SRR10203571 SRR10203572 SRR10203573 SRR10203574  SRR10203575 

ENSG00000000003  943.9131516 1081.681813  926.154233  928.446940  2328.75172 1936.248567 3045.9425136 

ENSG00000000005    0.0000000    0.000000    0.000000    0.000000   103.40512   74.627660   42.4940651 

ENSG00000000419 1073.8261263 1094.350159  755.008137 1299.561577  2052.71987 2328.383000 1446.4017622 

ENSG00000000457  437.8884880  446.315559  329.190099  289.231692   213.64695  146.541587  230.1093713 

ENSG00000000460  177.1540564  149.096682  110.548914  240.366064   758.01937  556.315286 1025.4699855 

ENSG00000000938    0.9084823    2.923464    2.456643    2.641385     7.69129    8.141199    0.8017748 

 

Figure 38. The first 6 features in a count table. 
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res_count <- merge(as.data.frame(res_T1_vs_C), as.data.frame(counts(dds, 

normalized = TRUE))[, c(“T1-1”, “T1-2”, “T1-3”, “C1”, “C2’, “C3”)], by = “row.names”, 

sort = FALSE)   # This code uses the indexing operator [ ] to extract the 

normalized read counts for all three repeats of treatment 1 and that of the three 

repeats of control RNA-seq. The comma here indicates that we keep all the rows in 

the resulting table. In this case, we avoid cluttering of the table with columns of read 

counts for other conditions not analyzed. T here denotes “treatment”, and C denotes 

“control”. T1-1 to T1-3, and C1 to C3 are the column names.  

 

 In the above code, you need to calculate the pair results first (T1 vs C). Of cause, you 

can do this in one step as below, 
 

res_count <- merge(as.data.frame(results(dds, contrast = c(“condition”, “T1”, “C”)), 

as.data.frame(counts(dds, normalized = TRUE))[, c(“T1-1”, “T1-2”, “T1-3”, “C1”, “C2’, 

“C3”)], by = “row.names”, sort = FALSE)  # In this code, to include the 

normalized read counts for the selected conditions you just specify the column 

names of  the count table.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 39. The first three features of the res-count table, an output of 

command, head(n=3, res_count). 

        Row.names   baseMean log2FoldChange     lfcSE     stat       pvalue         padj 

1 ENSG00000000003 1598.73413      1.3294072 0.2396090 5.548236 2.885669e-08 1.682866e-07 

2 ENSG00000000005   31.50384      8.6573786 1.1499967 7.528177 5.145367e-14 5.251722e-13 

3 ENSG00000000419 1435.75009      0.8799327 0.2907006 3.026938 2.470449e-03 6.675701e-03 

   

  SRR10203569  SRR10203570  SRR10203571  SRR10203572 SRR10203573 SRR10203574 SRR10203575 

1    943.9132     1081.682     926.1542     928.4469   2328.7517  1936.24857  3045.94251 

2      0.0000        0.000       0.0000       0.0000    103.4051    74.62766    42.49407 

3   1073.8261     1094.350     755.0081    1299.5616   2052.7199  2328.38300  1446.40176 
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Summary of Chapter 8 
 

• This tutorial uses DESeq2 to conduct statistical analyses. 

 

• The entire process of DE analyses can be conducted on RStudio, and HPC may 
not be needed. You can conduct this step on a desktop.   

 

• The genes/rows that are not expressed in all samples can be removed before 

analyses.  
 

• The result R object is generated using the DESeq2 result() function.  

 

• The count table is generated using the DESeq2 counts() function.  

 

• The count and statistical results can be combined using the R cbind() or merge() 
functions.  
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At this point, you have a table containing both statistical data and the normalized read 

counts for each sample (see Figure 39), but there are ENSEMBL ID (The row.names 
column in Figure 39) only without other information of the transcripts/genes. The tables 

a bioinformatician gives you include annotation information such as gene names and 

gene symbols. We need at least the gene symbols for the downstream analyses.  
 

9.1 Convert the S4 object of the DESeq results into data frame 
 

If you use the merge() function to generate the res_count table you can skip this step. If 
you use the cbind() function to produce the res_count table, you need some manipulation 

of the table before annotation.  

 

The resulting tables for the DESeq() and results() functions have row names of  the 

ENSEMBL IDs. The data set generated using the cbind() function is an S4 class object 
and also has row names of ENSEMBL IDs. In the annotation table, the ENSEMBL IDs 

constitutes a column. Before we proceed, we need to make the row names the first 

column of the data table. We need the R package tibble for this purpose since it has 

functions to manipulate row names.  

 
Load the tibble library, 

 
library(tibble) 

 

Check if the results table has row names using the tibble function has_rownames(), 
  

has_rownams(results(dds)) 

 

has_rownames(counts(dds, normalized = TRUE)) 

 

has_rownames(cbind(results(dds), counts(dds, normalized=TRUE)))  

 

The results for the above test are FALSE, but if you check using the head() function 

you will know these tables have row names, which are the ENSEMBL ID. 
 

head(results(dds)) 

 

head(counts(dds, normalized = TRUE)) 

 

head(cbind(results(dds), counts(dds, normalized=TRUE)))  

 

We change the row names as the first column, 
  

res_count <- as.data.frame(cbind(results(dds), counts(dds, normalized=TRUE))) 
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res_count <- rownames_to_column(res_count, var = “ENSEMBL”)   # 

This code also gives the column name of “ENSEMBL” to the new column 

manipulated using the var argument. You can also just change the row names to a 

column for res or count individual objects. You need to make it a data frame first 

before using the function of rownames_to_column(), i.e. count <- 

as.data.frame(count).  

 

 

Now, you can check if the first column contains the ENSEMBL IDs using 

head(res_count).  
 

9.2 Add annotations to the table 
 

Here, we use the organism-level annotation R packages. For human, the annotation 

package is org.Hs.eg.db. You may need to install the packages by yourself if the 
packages have not been installed by your HPC team.  

 

Load the package, 
 

library(AnnotationDbi) 

 

library(“org.Hs.eg.db”)   # You may see a message of: “Loading required 

packaged: AnnotationDbi” if you do not load AnnotationDbi first. Therefore, you can 

just load the library of “org.Hs.eg.db” only because it will automatically load the 

associated AnnotationDbi package. Please note that the quotation marks are not 

necessary. Note also that the H is in uppercase in the package name of org.Hs.eg.db. 

Otherwise, you will get a warning.  

 

We can check how many columns of annotations we could choose from using the 

columns() function, 
 

columns(org.Hs.eg.db) 

 

We can also find out what kind of key types we can use for annotation (usually, 

ENSEMBL id) using the keytypes() function,  
 

keytypes(org.Hs.eg.db) 

 

We use the select() function to build up the annotation data.frame, 
  

anno <- AnnotationDbi::select(org.Hs.eg.db, keys = res_count$ENSEMBL, keytype 

= “ENSEMBL”, columns = c(“GENENAME”, “SYMBOL”))  # Please note that 

both “GENENAME” and “SYMBOL” are in singular forms. If you use “GENENAMES” 
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or “SYMBOLS”, you will see a warning. Please note that the argument “keys” is in the 

plural form, not singular form; so is the “columns” argument; but the “keytype” 

argument is singular. Those make sense because you use one type of keys, but there 

are many keys of the selected key type; and most of the time you add >=2 columns. 

It will not work if you have any issue in spelling. 

 

Now, check the dimension of the anno data frame object, 
 

dim(anno) 

 

dim(res_count) 

 

You will find that the number of rows of the two objects are different. This is because 

one ENSEMBL Id may match multiple GENENAME and SYMBOL. We can remove 

the duplicates using the function duplicated(), and get the anno data frame without 
duplicated ENSEMBL Id using the following modified code. The code below use both 

the pipe operator, i.e., %>%, and the filter() function, both of which need the dplyr R 

package, 
  

library(dplyr)  # This loads the dplyr package. 

 

anno <- AnnotationDbi::select(org.Hs.eg.db, keys = 

count_statistic_dataframe$ENSEMBL, keytype = “ENSEMBL”, columns = 

c(“GENENAME”, “SYMBOL”)) %>% filter(!duplicated(ENSEMBL))   # Because 

both dplyr and AnnotationDbi packages use the function name of select(), we use 

AnnotationDbi::select() to avoid confusion. You may use select() if you do not load 

the package of dplyr. Please note that there are no quotation marks around 

ENSEMBL in the duplicated(ENSEMBL) function, and in 

count_statistic_dataframe$ENSEMBL. The count_statistic_dataframe is the res_count 

data frame. Please also note that it is “duplicated” not “duplicate”. 

 

Please note you can remove the duplicated ENSEMBL entries in a generated anno 
data.frame as, 
  

anno <- filter(anno, !duplicated(ENSEMBL))  # For the usage of filter(), refer to the 

help information for the filter() R function. 

 

To see the first 6 rows of the anno object, 
 

head(anno) 

 

The output of the above code may look like, 
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ENSEMBL                                                                                              GENENAME           SYMBOL 

1 ENSG00000000003                                                                               tetraspanin 6        TSPAN6 

2 ENSG00000000005                                                                               tenomodulin         TNMD 

3 ENSG00000000419   dolichyl-phosphate mannosyltransferase subunit 1, catalytic              DPM1 

4 ENSG00000000457                                                         SCY1 like pseudokinase 3            SCYL3 

5 ENSG00000000460                                    chromosome 1 open reading frame 112          C1orf112 

6 ENSG00000000938                      FGR proto-oncogene, Src family tyrosine kinase             FGR 

 

 

Now, check the dimension of the two objects again and you will find they have the 
same numbers of rows, 
 

dim(anno) 

 

dim(res_count) 

 

Now, use the left_join() function to combine the annotations into the results data 

frame, 
 

res_count__anno <- left_join(res_count, anno, by = “ENSEMBL”)  # please 

note that it is an underscore, not a dot between “left” and “join” in the function of 

left_join(). Please also note that the column name for the ENSEMBL Id column should 

be “ENSEMBL” here. Otherwise, you will see a warning: “Error: Join columns must be 

present in data. x Problem with `ENSEMBL`. You need to change the name to 

“ENSEMBL” first. The by argument may be omitted if both data sets have the same 

column names of “ENSEMBL” and this is the only column that has the same column 

name in both tables. When the column names for the two tables are different for 

their ENSEMBL columns, we can define both names as identical using the by 

argument: by =c(“Row.names” = “ENSEMBL”). Please note that when you define the 

two column names as the same, you need to place the two columns names in the 

same order as the two data frames are presented within the left_join() function. The 

combined table will take the first column name in the by argument as the column 

name of the new table.  

 

Please note that the order of the two table objects (res_count and anno) will define the 
order of columns in the newly combined table generated.  You can put whichever table 

first as you prefer. You may use the function of right_join() since the row are the same 

for the two tables. Please note that the different *_join() functions are ones from the 

package dplyr, but merge() is a base R function.  
 

Check the first several rows of the combined table using the head() function, 
 

head(res_count_anno) 

 

You can briefly see the list of column names by issuing, 
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colnames(res_count_anno)  # Or, you simply use the command 

names(res_count_anno) to get the same output. The colnames() and names() 

functions are the same.  

 

9.3 Review the data frames (tables) on RStudio 
 

You can bring about the tables using the function of View(), 
 
View(res_count)  # Please note that unlike other R functions the “V” in the 

View() function is in uppercase.   

 

View(res_count_anno) 

 

The tables (res_count, or res_count_anno) will appear in the source editor pane. Or, you 

just simply click on the object name in the workspace browser pane to achieve the same 

as the View() function does.  
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Summary of Chapter 9 
 

• The result and count table has no annotation to each row, and annotation should 

be made for further downstream analyses.  

 

• We use the R packages of AnnotationDbi and org.Hs.eg.db for annotation of 

human RNA-seq results.  

 

• We use the AnnotationDbi::select() function to generate the anno object.  

 

• We use the filter() and duplicated() functions to remove the duplicated rows in 

the anno object. The filter() function needs the dplyr package.  

 

• We combine the result/count table with the anno table using the left_join() 

function.  
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Chapter 10 
 

 

 

 

Work on the result data frame 
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Now, we have a result table similar to what you receive from a bioinformatician. You 

may want to manipulate your DE results such as sorting and extraction. Some of those 
manipulations can be easily done in Excel. However, R is more powerful and faster for 

some tasks. Here, I will show you some basic manipulation of the result table.  
 

10.1  Remove rows/genes that are not expressed in all samples (both treated 

and untreated) 
 

As you remember, we have removed genes before calling DESeq() for which the total 

read counts for all samples are less than or just 1. We may, however, have to use a higher 

threshold for the expressed genes, and can further reduce the size of the tables. We will 

use the subset() function to do this.  
   

 
res_count_anno_expressed <- subset(res_count_anno, (NameOfcount_column1 + 

NameOfcount_column2 + ... + NameOfcount_columnN) > 50, 

names(res_count_anno))    

 

This code will generate a much small data frame that lacks the genes whose total 

normalized read counts of all samples are less than 50. Here, you use column names (not 
position of the columns) to calculate the total reads. The column names can be found 

using the function of names() as introduced previously. Please note that there are no 

quotation marks around each column name. The following code extract expressed genes 

for  the RNA-seq samples in this tutorial with the higher threshold, 
 

res_count_anno_expressed <-  subset(res_count_anno, (SRR10203569 + SRR10203

570 + SRR10203571 + SRR10203572 + SRR10203573 + SRR10203574 + SRR10203

575) > 50, names(res_count_anno))   

 

10.2  Keep the genes/transcripts whose padj are < 0.05 
 

res_count_anno_expressed_Q005 <- subset(res_count_anno_expressed, padj < 

0.05, names(res_count_anno_expressed))  # This will generate a data frame 

that contains genes whose padj is less than 0.05. padj is the column name for the 

adjusted p values.  

 

10.3  Keep the genes/transcripts/rows that are upregulated by 1.2 fold 
 

up1dot2 <- subset(res_count_anno_expressed_Q005, log2FoldChange > log2(1.2), 

names(res_count_anno_expressed_Q005))  # log2FoldChange is the column 

name of the log2 fold change.  
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Similarly, you can keep the genes/transcripts/rows that are downregulated by 1.2 fold 

simply using the negative sign, 
 

down1dot2 <- subset(res_count_expressed_anno_Q005, log2FoldChange < -

log2(1.2), names(res_count_anno_expressed_Q005)) 

 

10.4 Keep genes that meet multiple conditions 
 

You can use & to subset on two or more criteria, for example, log2FoldChange and 
mean values at once. The logic operator & means both conditions should be met. For 

samples in this tutorial, the code below simultaneously select genes/rows that are 

downregulated at 1.2 fold at the padj < 0.05 level (meeting two conditions), 

 
up1dot2_significant <- subset(res_count_anno_expressed, log2FoldChange > 

log2(1.2) & padj < 0.05, names(res_count_anno_expressed))  # log2FoldChange is 

the column name of the log2 fold change.  

 
 

10.5  To extract all the RNA-seq data (all columns) for a list of genes 
 

Sometimes you are interested in a list of genes and want to extract data for that set of 

genes from your result data frame. When your gene list is long, this is difficult to do 
with Excel, but it is easy in R. You can use the subset() function to achieve this as 

follows, 
 

data4selectedGene <- subset(sourceRNAseqDataTable, ColumnNameOfGeneID %in% 

vectorObjectName4GeneList, names(sourceRNAseqDataTable)) 

 

ColumnNameOfGeneID should be the name of the gene ID column, which could be 

ENSEMBL, or SYMBOL. vectorObjectName4GeneList is the object name, which 

define the list of genes of your interest. You need to make this vector object first. The 

type of gene IDs should match that in the gene ID column (ENSEML or SYMBOL) of 

your result table/data frame. You need the R package dplyr to use the operator of %in%.  
 

 

10.6  Save and re-load the entire workspace 
 

You can save your workspace in the working directory (by default) by choosing “Save 
Workspace As” under the Session pulldown menu of RStudio. If you want to save the 

workspace on the home directory, you can go to the home directory first using, 
 

setwd(“~/”) 
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You can also use the save() function to save your workspace as a file. When using the 

save() function, please use the file extension name .Rdata, and use a code like this, 
 

 save(list=ls(), file = “myworkspace.Rdata”)  # You need to specify the 

object to be saved, otherwise you will have a warning of “Warning message: In 

save(file = "test.Rdata") : nothing specified to be save()d. The list=ls() command 

defines that all the objects in the current workspace will be saved with a file name of 

“myworkspace.Rdata” in the current directory.  

 

However, if you use the function of save.image(), you do not need to provide the objects, 
 

save.image(file = “myworkspace.RData”)   # save.image() is just a 

short-cut for ‘save my current workspace’. You can simply use: 

save.image(“myworkspace.RData”), omitting the “file =”. 

 

You can save the workspace in a specific directory by giving the path. For example,  
  

save.image(file = 

"/data/user/kejinhu/RNA_seq_tutorial/fastq_files/counts/RNA_seq_tutorial.RData") 

 

You can also save the workspace at any step of your analyses, and come back to work 

on it later. After you save your workspace, you can quit RStudio using, 

 
q()  # I am sorrty that this function should be introduced earlier for audience 

who has no prior R experience.  

 
When you come back to work on your workspace, you can load the workspace by 

clicking the “Load Workspace” button on the Session pulldown menu. Alternatively, as 

introduced at the beginning of Chapter 8 you can use the load() function in the working 

directory which contains your file of workspace.  
 

load(“RNA_Seq_tutorial.RData”) 

 

When your workspace file is not in the working directory, you can load it by providing 
the path to it. For example,  
  

load("/data/user/kejinhu/RNA_seq_tutorial/fastq_files/counts/RNA_seq_tutorial.RDa

ta") 

  

10.7  Save the DE results as a csv file 
 

You can use the write.csv() function to save individual DE result table in the csv 

(comma separated values) format in the working directory, 
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write.csv(res_count_anno, file = “file_name_of_your_choice.csv”, row.names = FALSE) 

  # Please do not forget the file extension of .csv.  

 

If you want to save the file in a directory that is not the current working directory, you 

can provide the path, 
 

write.csv(res_count_anno, file = 

"/data/user/kejinhu/RNA_seq_tutorial/fastq_files/counts/res_count_anno.csv", 

row.names = FALSE) 

  

 

Use the list.files() function to see if the file is saved in the working directory, 
 

list.files() 

 

Of course, you can list the files of any directory from the working directory just by 

providing the path, 
 

list.files("/data/user/kejinhu/RNA_seq_tutorial/fastq_files/counts/") 

 

Finally, transfer data from HPC to local computer using Globus, or FileZilla as 
introduced in Chapter 2.  

 

Now, you quit RStudio using q(). Please note that you quite Linux terminal using exit.  
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Summary of Chapter 10 
 

• You can save the R workspace at any steps of your DE analysis stage using the 

save() or save.image() functions, or simply save via the graphic menu/tabs on 

RStudio.  

 

• The workspace can be re-loaded at a later time using the load() function to 

continue the unfinished job.  

 

• The DE results should be saved onto your HPC as CSV files so that you can 

further analyze the DE results on your desktop. You can use the write.csv() 

function to save the file.  

 

• You can sort or subset your DE results in RStudio more efficiently than in Excel.  
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Appendix 
 

Software/packages used in this tutorial and their websites 
 

SRA-Toolkit  

A set of tools for management of Sequence Read Archive (SRA). for more information, 

visit https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=toolkit_doc.  

 

FastQC  

FastQC can QC RNA-seq raw data for individual files. Website, 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/.  

 

MultiQC  

A tool for aggregating results of bioinfromatics based on the log files across many 

samples into an integrated single report. Visit, https://multiqc.info/.  

 

nano text editor  
A text editor preinstalled on many Linux distributions. It is even installed on Mac OS. 

The nano text editor is a simple Linux text editor and can be used to view, prepare, or 

edit text files, and scripts. There is a list of key combinations right in the bottom of the 

editor. The most useful key combination may be: CTRL+G (online help), CTRL+O 
(save), CTRL+X (exit), CTRL+A (to the beginning of the current line), CTRL+E (to the 

end of the current line), ALT+/ (to the last line of the text/file), and ALT+\ (to the first 

line of the text/file). Visit https://www.nano-editor.org/.  

 

SLURM 
A popular job scheduler for HPC. For detailed information (tutorial, documentations, 

FAQ, publications, and others), visit https://slurm.schedmd.com/ . 

 

IGV  

A tool for visualization of alignment results, 
https://software.broadinstitute.org/software/igv/  

 

Filezilla 

A platform for data transfer to and from HPC, https://filezilla-project.org/ . 

 

Globus  

A tool for data transfer to and from HPC, https://www.globus.org/  

 

Open OnDemand  

https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=toolkit_doc
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://multiqc.info/
https://www.nano-editor.org/
https://slurm.schedmd.com/
https://software.broadinstitute.org/software/igv/
https://filezilla-project.org/
https://www.globus.org/
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A web-based interface to HPC developed by Ohio Supercomputer Center (OSC, 

https://www.osc.edu/resources/online_portals/ondemand). Open OnDemand webinar: 
https://www.youtube.com/watch?v=OxNBSk5_sTw. 

 

 

Tools for data transfer to and from HPC 
 

o SRA-Toolkit 

o Filezilla 

o Globus 

o wget 
o rclone 

o rsync  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.osc.edu/resources/online_portals/ondemand
https://www.youtube.com/watch?v=OxNBSk5_sTw
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Linux cheat sheet for RNA-seq analyses on HPC 
 

This section introduces some basic Linux commands used in this tutorial. It serves more 

like a cheat sheet not a Linux tutorial, nor a knowledge documentation. It focuses on the 

most commonly used command lines.  
 

File managements in Linux 

 

The most critical basic skills in Linux are file managements. One basic concept in In 

Linux (and Unix) is that everything is a file; a file is a file; a directory (folder in 
Windows) is a file; a device (a hard drive, a keyboard, or a mouse) is considered to be a 

file; and a software exist in Linux as a file. Therefore, knowledge and skills of Linux 

commands about file managements are essential to work on any Linux system. The 

following are introductions to some basic commands of file management. 

 
What are inside the room? - List contents of a directory  

 

ls is one of the mostly used Linux command. It prints out the contents of a directory on 

your terminal screen. After login to HPC (or on your desktop terminal), simply issue, 
 
 ls 

 

This will list the names of files in the current directory by default. A Linux command 

takes options, and the frequently used option of ls is -l, which allows ls to output files in 

the long format. The long format provides more information about each file and may 

have the following appearance, 

 
total 2576 

-rw-rw-r--   1  kejinhu  kejinhu   827   Dec 27 15:48  STAR_Index.slurm 

drwxrwxr-x  12  kejinhu  kejinhu   8192 Jan  2 10:58  fastq_files 

drwxrwxr-x   3  kejinhu  kejinhu   4096  Dec 28 10:18  humanGenomeIndex 

drwxrwxr-x   2  kejinhu  kejinhu   4096  Dec 30 12:42  multiqc_data 

-rw-rw-r--   1  kejinhu  kejinhu   394   Dec 31 13:26  samtools_index.slurm 

-rw-rw-r--   1  kejinhu  kejinhu   472   Dec 30 14:58  samtools_sort.slurm 

 

Another commonly used option to ls is -h, which means outputing the files in human 
readable format. Try,  

 
ls -l -h 

 
Multiple potions can be combined. For example, the script of ls -l -h can be used as, 
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 ls -lh 

 

There are hidden files in any directory. A hidden file starts with a dot. There are at least 

two hidden file, “.” and “..”. Single dot means the current directory, and double dots 

indicate parent directory (the directory one level up). Therefore, ls . functions the same 

as ls, and ls .. prints the files inside the parent directory. We need the option of -a to see 
the hidden files. Try,  

 
 ls -a 

 
The three options of -a -l and -h can be combined, 

 

 ls -ahl   # This functions the same as ls -a -l -h does. 

 
When the options are combined the order of the options does not matter and ls -ahl, ls -

hal and ls -lha do the same thing.  

 

Looking for help 

 
A single letter option of a Linux command is indicated by a single dash -, but if you use 

a multiple-letter option (i.e., word option) two dashes are used, i.e. --. The most useful 

option for all Linux command is --help. The --help option outputs the help page of a 

Linux command line. For example,  

 

ls --help  # This displays the help page for the command of ls.  

 

Please note that Linux has a help command, which is used differently from the --help 

option. Please try,  
 

help help  # This prints out the help page of the help command. The –help 

option is more useful than the help command. Please try you self, help cd; help echo; 

help pwd. 

 

Behind each Linux command is a software, and you can find the versions of many 

commands using the --version option of a command. For example, 
 
 ls --version 

 
The information outputted by the above script indicates that ls is one of the GNU core 

utilities. 

 

Another way to find out help information is using the manual command, man, try, 
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 man ls 

 

The above code will bring about the manual pages on the terminal screen. The manual 

is generally longer than a single screen can accommodate, and you can navigate along 

the manual line by line using the down or up arrow keys, or page by page using the page-

up or page-down keys (or key combinations).  To quit the manual pages and return to 
the shell terminal, you just hit the letter q key on your keyboard.  

 

Of course, you can google any of your Linux questions and you can always find a 

solution to your questions. I do googling all the time whenever I have a Linux issue.  

   
Make a storage room using the command of mkdir 

 

When you login to your HPC account, you will land on your home directory, i.e., 

/home/yourName.  You can make your own directory to hold your files using the 

command of mkdir, which means “make directory”. mkdir is also a GNU core facility 
(You can see this by issuing mkdir --version). The syntax is mkdir directory_name, for 

example, 

 
 mkdir test 

 

The above code generates a directory named test. Issue ls or ls -l to see the generated 

directory of test.  

 

You can make multiple directories in one code. Within the test directory, make 

subdirectory of example1, example2 and example3, 

 
 mkdir example1 example2 example3 

 

Use ls or ls -l to see your newly generated directory.  

 

From one room to another – the hange directory command cd 

 
The second essential and most used command is cd, i.e., Change Directory. You can go 

to the new directory test you just generated, 

 
 cd test 

 

Now, use ls or ls -l to see the contents of the test directory, and you will know there is 

none. Make sub-directory within the test directory, 

 
 mkdir test1 test2 test3 
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use ls or ls -l to see the newly generated subdirectories. You will see you have generated 

three sub-directories. 
 

As described above the double dots denote parent directory. Therefore, you can go to 

the immediate parent directory using the code below, 

 
 cd ..  

 

You are back in the home directory in this case. You can go directly to any deep branch 

directory by providing the path to it. For example, 

 
 cd test/test1 

   

The tilde sign ~ denotes the home directory, you can go to home directory from any 

directory using the code, 
 
 cd ~ 

 

The above code navigates you from the test1 directory to the home directory, and now 
you can see a tilde sign after your username.  

 

You can go to the last directory you were using, 

  
cd - 

 

Where am I?  

 
Another essential Linux command line is for printing out the path to the working 

directory, i.e., pwd, 

 
pwd  # This outputs the full path to the current directory. 

 

Useful Linux techniques 
 

Copy and paste the text 

 

To copy target text, you can just highlight the text to be copied using your mouse cursor. 

When you release your mouse after choosing the text, you will see a flashing scissors. 
This indicate that the text is copied onto the clipboard, and you can now paste it as 

needed. For iMAC, you can use the key combination of “command + V” to paste the 

copied text from the clipboard to the terminal.  

 

Reuse previously executed command lines  



 131 

 

You can use the up-arrow key to bring back the executed commands. You can keep 
hitting the up-arrow key till you reach the command you are interested in, and you can 

hit enter to re-execute the same command, or you can modify your script and execute 

the revised script. The down-arrow key can be used similarly.  

 

Path expansion for file/directory management  

 

The wildcard * is the most used path expansion character. * can be used to match any 

character or no character in a character string. It is useful to manipulate the file names 

in writing codes for RNA-seq analyses of multiple files. Other means of path expansions 

include “?” (question mark), “[ ]” (square brackets) and “{ }” (curly braces). ? matches 
exactly one character; [ ] are used to specify characters for which one of them will be 

matched; { } are used to list character string of patterns to be matched.  

 

 

Bash comments 

 

The pound (or hash) sign # is the comment indicator in Linux. Within script, anything 

after # till the end of the line is a comment and is ignored by the bash interpreter.  In this 

tutorial, # is also used to indicate comments after a command line/script.  
 

The most useful key skills in Linux 
 

q key, the q key means quit from the online manual page or an opened text file. 

 
tab key, the tab key functions as a completion key in both Linux terminal and R. This 

key will save you a lot of time and avoid typos. 

Control + C, pressing the Control and C keys together will terminate a process in 

Linux.  

Control + D, exit the Linux terminal. It is equivalent to exit followed by ENTER key.  
Control + E, take the cursor to the end of the command line. 

Control + A, go to the beginning of the command line in the screen.  

 

 

List of command Linux commands, operators used in this tutorial 
 

cd, change directory 

 
cp, copy files 

 

cat, concatenate files and print on the standard output 
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echo, output the line of text/string, which is passed as an argument. 

 
gunzip, compress or uncompress files.  

 

ls, list the files in the current directory. The mostly used option is -l, and you can 

combine the -h with the -l options, i.e., -hl to display the more human readable output. 

  
lscpu, display information about the cpu architecture. 

 

pwd, print out the path of the current directory. 

 

mkdir, make directory. 
 

nano, open or create a text file, and then view, and/or edit it in Linux environment. 

 

rm, rm files and/or directories. 

 
man, an interface for the online reference manuals. It is very useful whenever you need 

help about a Linux command. Examples: you can try to retrieve the manuals for cp, or 

rm, or pty: man cp; man rm; man pty.  

 
help, a command to get the help page of Linux command. The syntax is help command-

line. For example, help cd; help help; help pwd. Please note that Linux command lines 

have a --help option, which has a different syntax (see below). 

 

--help, a command option that retrieve online help pages when used with a command. 
Example, try: cp --help.  

 

less, displays the content of a file one page first, and allows for subsequent navigation 

within the file page by page or line by line using the arrow keys and page keys. 

 
head, output the first part of a file. 

 

mv, move files around, and can be used to re-name files.  

 

module spider, list the specified module. 
 

module load, load the specified module. 

 

nano, open a text file in the nano text editor. 

 
rclone copy, copy files and directories between HPC and cloud storage. 

rclone config, configurate access to your cloud storage.  
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srun, run a parallel job on cluster managed by SLURM. Call exit to exit the interactive 
srun mode.  

 

sbatch, submit a non-interactive batch script to SLURM. 

 

squeue, view information about jobs managed by SLURM. The mostly used option with 
the squeue command is the user option -u, for which the value should be your HPC 

username. It will print out a long list of jobs if you do not use any option, i.e., squeue.  

 

scancel, cancel batch jobs. 

 
rsync, a utility that can transfer data (files and directory) between your local computer 

and HPC.  

 

Output redirection operator >, > diverts the standard output of a command into the 

specified file. 
 

The pipe operator |. In Linux, the pipe operator is used to redirect the output of one 

command to another command to process as input data. The syntax is, command-1 | 

command-2 | ..... command-N.  
 

Line continuation operator \, the backslash serves as a line continuation operator when 

placed in the last place of a script line. Backslash is frequently used in RNA-seq 

coding since you encounter long command line a lot when preparing code for RNA-

seq analyses. Please note that \ is the last character and there is even no white space 
after \.   

 

tail, output the last part of a file. 

 

scontrol show job [job ID], this will print out the basic information about the listed job 
(identified by the job ID) including number of CPUs, tasks, nodes, CPU/task, memory 

and others. 

 

scontrol show partition. This will print out the partition systems on your HPC.  

Scontrol. 
  

scontrol show node [node ID], this will output the information of the specified node.  

 

wget, the non-interactive network downloader. 

 
wc, count the number of bytes, lines, words, characters, and others of specified files, 

and print out the count results.  
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The for loop is frequently used in RNA-seq analysis to analyze multiple samples using 
the same code. Linux for loop has the syntax of, for variable in string; do application 

code; done. In this syntax, the red texts are invariable; the purple ones are user defined. 

In RNA-seq, the string is usually a set of file names; the variable represents the file 

names iterating over the string list; the application code is package-specific instruction 

of compute job.  
 

 

 

 

Major R packages used 
 

o DESeq2 

 

o tibble 
 

o AnnotationDbi 

 

o org.Hs.eg.db 
 

o dplyr 
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