The Epigenetics of Obesity: Individual, Social, and Environmental Influences

K. J. Claycombe, Ph.D.

What can happen to our gene(s) that would cause obesity?

Modification via Epigenetic alterations

Choi and Friso, Adv Nutr, 1:8-16, 2010

Early-life determinants of overweight and obesity

Early-life determinants of overweight and obesity

Obesity Reviews, Monasta et al., 11 (10): 695-708, 2010

Early-life determinants of overweight and obesity

Epigenetics

 Epigenetics is an inheritable changes that affects gene expression without DNA base pair sequence changes

- Examples of epigenetic phenomena
 - DNA methylation
 - histone modifications
 - chromatin remodeling

Maternal diet, infection, stress and inflammatory immune function regulation

NATURE REVIEWS ENDOCRINOLOGY | RESEARCH HIGHLIGHT

REPRODUCTIVE ENDOCRINOLOGY

You are what your grandmother ate—inherited effects of *in utero* undernourishment

Jennifer Sargent

Nature Reviews Endocrinology 10, 509 (2014) | doi:10.1038/nrendo.2014.127 Published online 29 July 2014 "What your grandparents ate could affect your health"

For example, when a paternal grandmother experienced drastic changes in food availability as a child, then granddaughters had an increased risk for cardiovascular mortality as an adult

Don't blame the mothers

Headlines in the press reveal how these findings are often simplified to focus on the maternal impact: 'Mother's diet during pregnancy alters baby's DNA' (BBC), 'Grandma's Experiences Leave a Mark on Your Genes' (*Discover*), and 'Pregnant 9/11 survivors transmitted trauma to their children' (*The Guardian*). Factors such as the paternal contribution, family life and social environment receive less attention.

Don't blame the mothers

A Control development and postnatal nutrition in fathers. Healthy Offspring **Control Males Control Females** Sperm Breeding You Are What Your Dad Ate **Cell Metabolism** B Current High Fat or Low Protein Diet Volume 13, Issue 2, 2 February 2011, Pages 115-117 Breeding C History of Exposure to Offspring with Experimental Maternal Caloric Metabolic X Males Restriction Disease Risk OR **Control Females**

Cover, Science, August 15th, 2014, Vol. 345

Do prenatal experiences shape culinary tastes?

Volunteers easily sniffed out which came from the garlic consumer

Babies born from two groups of volunteers who consumed plain flavored or garlic capsules

Videotape images were generated when babies were given garlic milk

Other Supporting Evidence (Animal Study)

FASEB Journal, 25(7): 2167-2179, 2011

Other supporting evidence (animal study)

FASEB Journal, 25(7): 2167-2179, 2011

Conclusions:

Mice whose mothers had a junk food diet developed altered development of the central reward system, resulting in increased fat intake and altered response of the reward system to excessive junkfood intake in postnatal life

Example of Basic Science Studies of Epigenetics

Obesity and Epigenetics of Adipose tissue (USDA ARS Research Program)

LP fed dams and offspring Phenotyes

hypertension (Langley-Evans et al, Clin Nutr 1994; 13: 319–324)

increased fat deposition and altered feeding behavior

(Lucas et al., Br J Nutr 1996; 76: 605–612, Bellinger et al.,

Br J Nutr 2004; 92: 513-520, and

Bellinger et al., Int J Obes (Lond) 2006; 30: 729-738)

impaired glucose homeostasis, dyslipidaemia

(Burdge et al., Prostaglandins Leukot Essent Fatty Acids 2008; 78: 73-79)

impaired immunity

(Calder and Yaqoob, Nutr Res 2000; 20: 995–1005)

increased susceptibility to oxidative stress

(Langley-Evans and Sculley, Mech Ageing Dev 2005; 126: 804-812)

Intrauterine growth restriction and catch-up growth

Animal model of obesity and epigenetics

Experimental Design

How to measure fat tissue changes over time in live animals?

Magnetic Resonance Imaging (EchoMRI)

Num	Label	Fat (g)	Lean (g)	F.Water (g)	Time Date; Dur	Acc	T.Water (g)	Weight	tID	Comments
10	N/A	33.136	-0.026	0	10:41:24 Jul	1	2.344	N/A	9	N/A
9	N/A	33.138	-0.006	0.044	10:39:47 Jul	1	2.125	N/A	9	N/A
8	N/A	33.161	-0.085	0.025	10:38:12 Jul	1	2.32	N/A	9	N/A
7	N/A	33.126	0.003	-0.008	10:36:36 Jul	1	2.173	N/A	9	N/A
6	N/A	33.139	-0.017	-0.02	10:34:56 Jul	1	2.522	N/A	9	N/A
5	N/A	33.198	-0.101	0.007	10:33:21 Jul	1	2.362	N/A	9	N/A
4	N/A	33.069	0.086	-0.026	10:30:42 Jul	1	2.682	N/A	9	N/A
3	N/A	33.089	0.031	-0.003	10:29:05 Jul	1	2.544	N/A	9	N/A
2	N/A	33.181	-0.07	0.005	10:27:25 Jul	1	2.075	N/A	9	N/A
1	N/A	33.236	-0.154	-0.027	10:25:35 Jul	1	2.179	N/A	9	N/A

Low Adipose Tissue Weight and Catch-up Growth

10 fold increase

2.5 fold increase

Adipose tissue mass fold increase

Effects of prenatal and postnatal diet on imprinted gene expression?

Igf2/H19 Locus

- Insulin-like growth factor 2 (*IGF2*) was the first imprinted gene identified (*Cell, 64:849-859, 1991*)
- IGF2 is a major fetal growth factor (Nature 417:945-948, 2002)
- Epigenetics is an inheritable changes that affects gene expression without DNA base pair sequence changes (e.g. <u>DNA</u> <u>methylation</u>, histone modifications)

Effects of LP prenatal and HF postnatal diet on Adipose Tissue IGF2 mRNA Expression

- •CTCF- CCCTC motif binding factor
- •1-4 CpG sites/CTCF

IGF2 transcription activation

IGF2 transcription repression

ICR/ H19 DMR Methylation in Adipose Tissue

Effects of LP prenatal and HF postnatal diet on Adipose Tissue Dnmt3a mRNA Expression

Is there metabolic phenotype associated with catch-up growth?

Effects of LP prenatal and HF postnatal diet on GT

Effects of LP prenatal and HF postnatal diet on Plasma Insulin Concentrations

Adipose Tissue Mitochondrial Copy Number

Visceral

Subcutaneous

Effects of LP prenatal and HF postnatal diet on Adipose Tissue IGF2 mRNA Expression

Normal

Normal

Normal

Normal

Other metabolic tissues?

Effects of LP prenatal diet on Muscle Metabolism and mt Function

Effects of LP prenatal diet on Brown adipose tissue function

Acknowledgment

USDA ARS GF HNRC

Rolando Garcia Tom Johnson James N. Roemmich Ling Yang

Altru Hospital

OBGYN Department

University of ND

Joyce Ohm
Archana Dhasarathy
Othman Ghribi
Brij Singh
Catherine Brissette
Turk Rhen
John Shabb

Epigenetic Group

Thank you