Efficacy of AFN-1252 and Vancomycin in the Mouse Subcutaneous Abscess Model with a Methicillin-Resistant S. aureus

W. J. WEISS, B. HAFKIN, N. KAPLAN, M. E. PULSE, P. NGUYEN, J. BOLLEDULL

1. UNT Health Science Center - Preclinical Services, Ft. Worth, TX, 2. Affinium Pharmaceuticals, Toronto, Canada

Methods and Materials

Background: AFN-1252, a novel-antibiotic, inhibits the bacterial fatty acid and lipoteichoic acid synthesis. It is a promising agent for the treatment of MRSA infections due to its novel mechanism of action and promising in-vitro and in-vivo activity against resistant strains. This study evaluated the efficacy of AFN-1252 in a murine subcutaneous abscess model.

Methods and Materials:
- **Animals:** Female 5-6 week old CD-1 mice were used in the studies.
- **Treatment:** Mice were rendered neutropenic by a single IP injection of cyclophosphamide (150 mg/kg) on day -4 prior to infection.
- **Inoculum:** Inoculum: Female CD-1 mice were rendered neutropenic by a single IP injection of cyclophosphamide (150 mg/kg) on day -4 prior to infection.
- **Abscesses:** Abscesses were formed on the dorsal surface of CD-1 mice following subcutaneous injection of methicillin-resistant *S. aureus*.
- **Inoculation:** Inoculation:
 - **CFU/mL:** 6.5 x 10^6
 - **Vanco 30 mg/kg IP:** 30 mg/kg IP bid exhibited a 4.4 log CFU reduction from the WFI vehicle.
 - **AFN-1252, administered twice-a-day (bid) resulted in a 5.89, 5.24 and 2.5 log reduction when dosed at 10, 30 and 100 mg/kg, respectively.

Results

Efficacy of AFN-1252 and Vancomycin in the Mouse Subcutaneous Abscess Model with a Methicillin-Resistant S. aureus

Summary and Conclusions

- **AFN-1252** is a novel-staphylococcal agent acting by a novel mechanism of action involving the bacterial fatty acid and lipoteichoic acid (FAS II) pathway.
- **Vancomycin** is a well-known agent against MRSA and serves as a control for comparison.
- **AFN-1252** exhibited potent activity against MRSA strains with no cross resistance and a low frequency of resistance compared to other antibiotics such as vancomycin and fluoroquinolones.

Acknowledgments

The authors thank Gary Zurenko of Micromyx Inc., Kalamazoo, MI and Dr. Jerry W. Simecka of UNT for providing AFN-1252 for use in the studies. This work was supported by a grant from UNT Health Science Center - Preclinical Services, Ft. Worth, TX, and UNT Health Science Center - Preclinical Services, Ft. Worth, TX, and American Health Assistance Foundation, Washington, DC.

References