Pharmacology and Neuroscience
Student Handbook
2020-2021

The information provided in this document serves to supplement the requirements of the Graduate School of Biomedical Sciences detailed in the UNTHSC Catalog with requirements specific to the discipline of Pharmacology and Neuroscience.
Table of Contents

Description of the Pharmacology & Neuroscience Discipline	3
Graduate Faculty and Their Research	4
Requirements	18
Required Courses	18
Journal Club and Seminar Courses	18
Works in Progress	18
Elective Courses	18
Sample Degree Plans	20
Advancement to Candidacy	23
Pharmacology & Neuroscience Discipline

Pharmacology is a discipline that bridges the basic and clinical sciences. Classically, pharmacologists sought to understand the pharmacological responses, mechanisms and clinical uses of drugs. In recent decades, the scope of pharmacology has expanded dramatically to include cutting edge research in signal transduction and cellular & molecular biology.

Neuroscience combines the fields of anatomy, physiology, molecular biology and cytology to study the function of the brain and nervous system. The goal of these studies is to gain a fundamental understanding of the biological basis of learning and memory, as well as the processes involved in neural development and neurodegeneration. The scope of neuroscience includes molecular and cellular studies of individual neurons to imaging the circuitry of sensory and motor tasks within the brain.

The Pharmacology & Neuroscience faculty maintain active research programs in the following areas: aging and Alzheimer’s disease; drug discovery; glaucoma and ocular pharmacology; stroke; Parkinson’s disease; learning and memory; neurobiology of drug and alcohol abuse; neuronal degeneration and protection; neuropsychopharmacology; pharmacogenetics; and receptors and ion channels.

Students in the Pharmacology & Neuroscience Discipline may choose from a number of advanced elective courses that are related to their individual research interests. Students are also required to participate in seminars, works in progress presentations and group discussions of current research topics, and will be trained in a number of techniques required to address existing research problems in the field. Both MS and PhD students will conduct original, publishable research and will be expected to present their results at national scientific conferences. Completion of the master’s degree typically requires two years while the PhD degree is generally completed in four to five years.

Students who successfully complete a graduate degree in the Pharmacology & Neuroscience discipline will be well prepared for careers in academic or government research laboratories, as well as in the pharmaceutical/biotechnology industry.
Pharmacology & Neuroscience Graduate Faculty and Their Research

Robert Barber, Ph.D.
Associate Professor, Pharmacology and Neuroscience

Research in my group is focused on identifying genetic and epigenetic risk factors for neurodegeneration. Work in our group is collaborative and translational in nature. Ongoing projects include efforts to use patterns of DNA variation and differential methylation to predict the risk and progression rate of Alzheimer’s disease. I am also interested in the biology of Alzheimer’s among Mexican Americans and how disease etiology may differ between this underrepresented ethnic group and Caucasians. A second area of research interest is how individual gut bacteria profiles may impact risk for neurodegeneration and the age at onset of cognitive decline. Collaborations are established with researchers at UNTHSC and other Texas institutions, as well as the University of North Carolina at Chapel Hill. Active projects are ongoing with Drs. O’Bryant, Allen, Planz, Cross, Hall, and Cunningham at UNTHSC; Chumley and Boehm at Texas Christian University; Royall and Palmer at UT Health Science Center at San Antonio and Wilhelmsen and Tilson at the University of North Carolina at Chapel Hill.

Alakananda Basu, Ph.D.
Professor, Microbiology, Immunology & Genetics

The primary focus of my research is in signal transduction, especially in the context of cancer chemotherapy. One of the major research efforts is to investigate how signal transduction pathways regulate cell survival and cell death. We have been studying how various signaling pathways, such as protein kinase C, Akt, and mechanistic target of rapamycin (mTOR)/S6 kinase (S6K), regulate apoptosis (a genetically programmed cell death), autophagy (a process by which a cell recycles its own components to survive under stressful or nutrient-derived conditions), and senescence (loss of proliferative capacity of cells).

Kathleen Borgmann, Ph.D.
Assistant Professor, Pharmacology and Neuroscience
The overarching scientific goal of Dr. Borgmann’s research is to explore ‘The Funnel Hypothesis’ – where insults to the brain enter the funnel from the periphery and trickle down the edges through complex pathways. These may include, but are not limited to, HIV-1 infection, drug exposure, cancer, microglial activation, excitotoxicity, mitochondrial dysfunction and calcium dysregulation. The resultant differential outcomes of acute and chronic inflammation converge in the brain at the astrocyte, which cares for and communicates directly with the neuron, ultimately leading to neurodegeneration. Dr. Borgmann’s research program focuses on the role of glial inflammation in neurodegeneration, particularly in the context of HIV/AIDS, other dementias, drug abuse, aging and cancer. The burden of HIV infection on the world population is astounding. The evidence for astrocytes playing an important role in neural health and disease conditions continues to grow. Our laboratory investigates two main themes that pertain to glial responses in disease. One line of investigation is focused on the alterations in protective functions of astrocytes, while the other investigates activation of pathways deleterious to neural health. We currently have several research projects related to these themes in primary human neural cell cultures and transgenic HIV animal models.

Ayyappa Chaturvedula, Ph.D.
Associate Professor, Pharmacotherapy

My group works in the area of pharmacometrics. Our specific focus of research is in developing population pharmacokinetic and pharmacodynamic models to understand and optimize dosing regimen. Our current projects are in quantifying the effect of non-adherence to medications on the prophylaxis of HIV infection.

Abbot Clark, Ph.D.
Executive Director and Regents Professor, Pharmacology & Neuroscience

Dr. Clark’s major research focus is to discover the molecular mechanisms involved in ocular diseases, particularly glaucoma, in order to develop disease modifying therapies for better management of ocular diseases. Glaucoma is the leading cause of irreversible vision loss and blindness in the world and is also the leading neurodegenerative disease, affecting both the eye and brain. Dr. Clark’s research includes molecular genetics, molecular biology, cell biology, physiology, pathology, and mouse models of glaucoma. A main goal in this lab is to perform translational research that eventually will help patients with glaucoma. In addition to research, he trains and mentors graduate students, postdoctoral fellows, and medical students. He also is very active in community-based vision screening events.
Rebecca Cunningham, Ph.D.
Associate Professor, Pharmaceutical Sciences

Through her lab work, Dr. Rebecca Cunningham studies the role of steroid hormones, specifically androgens, during aging. Most of the team’s research has been focused on androgen signaling mechanisms and defining the effects of androgens on central nervous system function. One of Dr. Cunningham’s long-term research goals is to determine how development and aging alters steroid hormonal responses in the central nervous system. In pursuing this goal, Dr. Cunningham and team use in vitro, in vivo, and clinical approaches to understand the how androgens affect brain function. It is hoped that this research will expand the understanding of how steroid hormones in the brain participate in aging. At the same time, she is expecting new insights that can lead to a better understanding of the role of gender in central nervous system disorders.

Hriday Das, Ph.D.
Professor, Pharmacology and Neuroscience

Currently there are no clinically-effective treatments or prophylactic-preventative agents for Alzheimer’s disease (AD). My current research involves identification of molecular mechanisms of neuronal cell death in AD and develop cost-effective clinically-useful drug therapies for prevention of neuronal cell death and the treatment of AD. We are testing the effects of drugs that prevent neuronal cell death and improve memory in the genetically engineered mouse model of AD. The identification of novel pathways that these potential drugs regulate for neuroprotection in these genetically engineered mice, could provide new therapeutic avenues for AD. The anticipated outcomes of our mouse studies are likely to provide strong justification for the continued development and future clinical trials of these drugs for the treatment of AD.

Xiaowei Dong, Ph.D.
Assistant Professor, Pharmaceutical Sciences

Dr. Xiaowei Dong received a BS in Industrial Analysis and a MS in Applied Chemistry from the universities in China, and a PhD in Pharmaceutical Sciences from the University of Kentucky. Dr. Dong was selected as one of six students nationwide to participate in the 2008 AAPS Graduate Student Symposium in Drug Delivery and Pharmaceutical Technology. She has worked as a lead formulator for drug development at Novartis Pharmaceutical Corporation for four years. In 2013, she joined UNT Health Science Center as an assistant professor in the Department of Pharmaceutical Sciences at the College of Pharmacy. Dr. Dong’s research has focused on drug delivery and formulation development.
Michael Forster, Ph.D.
Regents Professor, Pharmacology & Neuroscience

The goal of research in our lab is to understand the biology that makes us slow down and become more vulnerable to disease and injury as we grow older. We know that it is possible to combat aging biology, because some people achieve advanced age in truly great condition. Studies of the habits and biology of such individuals during their lives are underway, but it may take several human lifetimes for them to be completed. Lower organisms grow old more rapidly and, like humans, show great differences among individuals in terms of how long they remain robust and resist disease and injury. By studying lower organisms, our laboratory is focused on the promise that we can rapidly discover ways to combat deleterious aging conditions, study how they work, and design trials in humans. Understanding the biology of aging will help us treat all aging-related diseases (i.e., Alzheimer’s disease, diabetes, etc).

Michael Gatch, Ph.D.
Professor, Pharmacology & Neuroscience

The focus of our research is on two broad aims. One aim is to screen compounds that will attenuate the subjective and reinforcing effects of abused drugs as part of a NIDA-funded contract searching for effective treatment drugs for addiction to cocaine, methamphetamine, nicotine and marijuana. Another aim is to evaluate the potential abuse liability of novel designer drugs that are increasingly available as "legal" alternatives to controlled substances. We use drug discrimination procedures which assess the subjective effects of common drugs of abuse such as cocaine, methamphetamine, nicotine and marijuana, with designer drugs like MDMA (Ecstasy), with opioids like morphine, or with hallucinogens such as LSD. We also test the reinforcing/rewarding effects of drugs using the conditioned place preference and self-administration assays.

Stella Gouloupoulou, PhD
Assistant Professor, Physiology & Anatomy

Research in my lab focuses on vascular physiology and pharmacology. Our long-term goal is to determine what molecular mechanisms facilitate maternal vascular adaptations in pregnancy and how these adaptations determine long-term maternal vascular health. Currently, we are studying the interaction between extracellular mitochondrial DNA and Toll-like receptor 9 to delineate the role of circulating mitochondrial DNA in the development of maternal vascular dysfunction in preeclampsia. In a different project, we are studying the cross-talk between maternal adipose tissue and maternal arteries. We are interested in understanding how this cross-talk regulates maternal blood flow. We are also interested in understanding how maternal obesity impairs the relationship between maternal adipose tissue and arteries, leading to maternal vascular dysfunction and impaired blood flow to the uteroplacental unit.
James Hall, Ph.D.
Professor, Pharmacology & Neuroscience

The focus of my research over the past few years has been on Alzheimer’s disease and the identification of blood-based biomarkers that can be used in the early diagnosis of the disease. I have focused on investigating risk factors for cognitive decline and dementia in the Mexican-American elderly. I have also investigated the occurrence and identification of factors leading to neuropsychiatric symptoms of Alzheimer’s such as depression, anxiety, and inappropriate behavior. Alzheimer’s is a major public health concern, and developing accessible means to predict the disease and potentially allow for intervention to prevent or slow the disease is of upmost importance. Additionally, being able to identify those with the disease who are most likely to develop neuropsychiatric symptoms (the primary cause of caregiver stress and nursing home placement) can lead to early intervention and provide the groundwork for understanding the pathophysiology of neuropsychiatric symptoms of dementia. Developing treatment approaches for the pre-clinical stage of Alzheimer's disease to reduce the risk of developing neurodegenerative diseases is crucial to our aging population.

Ren-Qi Huang, PhD
Associate Professor, Pharmacology & Neuroscience

Dr. Huang’s lab mainly studies the details of synaptic function mediated by GABA type A and glycine ion channels and receptors and its modulation and plasticity under physiological and pathological states, using a variety of modern electrophysiological and molecular biological techniques such as patch-clamp, site-directed mutagenesis, substituted cysteine accessibility method (SCAM), immunofluorescence microscopy, pharmacological, and conventional biochemical techniques. Projects within the lab are to study these synapses from cellular to molecular levels utilizing various preparations including brain slice and recombinant preparations. Overall, our major objective is to provide a molecular description of the therapeutically important receptors/channels; to gain a deeper understanding of their role in normal and diseased states; and eventually to develop novel therapeutic interventions which target these receptors.

Kunlin Jin, M.D., Ph.D.
Professor, Pharmacology & Neuroscience

Stroke remains a leading cause of disability in the world. Despite progress in understanding molecular mechanisms of neuronal cell death in these diseases, widely effective treatment remains elusive. For many stroke survivors, the best hope is a lengthy program of rehabilitation, followed by a life-long process of clinical support. However, even with rehabilitation therapy, 50% to 95% of stroke survivors remain impaired. We have documented that endogenous neural stem cells (NSCs) can proliferate, migrate and differentiate into functional neurons to replace or repair damaged neurons after acute ischemic stroke. Conditional depletion of neurogenesis inhibits functional recovery after ischemic stroke either in young adult or aged animals. Yet, patients who survive an acute stroke are typically left with fixed anatomical damage, which eventually transforms a brain cavity and results in permanent neurological deficits. Therefore, NSCs may not be able to reconstitute the lost neural tissue and restore the functional
circuitry at chronic stage of stroke due to the brain cavity. To help elucidate the potential of cell replacement therapy in stroke, we found that transplantation of human ESC-derived NSCs with Matrigel scaffolding resulted in improved histologic and behavioral outcome in animal model of stroke. However, many issues remain to be addressed before clinical application of this strategy becomes feasible. Matrigel is a gelatinous protein mixture extracted from EHS mouse sarcoma cells. Therefore, there is almost no chance that this mouse sarcoma derived gelatin would be approved for use as a scaffold for grafting cells into the human stroke. To address this issue, we generated gel-like scaffold from serum with ideal properties, and treated patients with ischemic stroke using autogenous stem cells and serum-derived scaffold. We found that the motor deficits and tissue damage post-stroke were significantly improved after transplantation, suggesting that stem cells-based tissue engineering may be a clinically effective therapeutic strategy for repairing the damaged brain tissue in the chronic phase after stroke.

Leigh Johnson, Ph.D.
Assistant Professor, Pharmacology & Neuroscience

My area of expertise is in translational aging research. I am the Co-I of Health & Aging Brain among Latino Elders (HABLE) study (R01AG054073), and the Director of the Clinical and Outreach cores for this study. I have spent a great deal of time studying factors related to cognitive loss among Mexican Americans with specific emphasis on the link between depression and cognition. I have developed and cross-validated a depressive endophenotype (DepE) of cognitive aging across multiple national and international cohorts. This work has been translated into a proof of concept clinical trial (The DEMO trial).

Ran Liu, M.D.
Research Assistant Professor, Pharmacology & Neuroscience

The principal goals of my research are focused on translational stroke research. Although rtPA is the sole FDA approved treatment for ischemic stroke, very few patients have been benefited from rtPA treatment because of its limited therapeutic window and the increased risk of hemorrhage transformation due to blood-brain barrier breakdown. We are among the first to explore the combined therapy to extend rtPA’s therapeutic window in ischemic stroke models. We have demonstrated that estrogens could extend the therapeutic window of rtPA for the treatment of ischemic stroke. In addition, our research has provided insight to target ischemic penumbra and beyond for the treatment of ischemic stroke. Currently we repurpose a century-old drug, methylene blue, for the treatment of ischemic stroke. Our study demonstrates that large MCA territory infarct may induce long-lasting elevated GABAergic tonic inhibition in the hippocampus and, thus, contributes to cognitive impairment after ischemic stroke. All these results have led us to explore the role of GABA receptors mediated neurotransmission in the cognitive impairment after large MCA territory infarct and to determine the effect of methylene blue on cognitive impairment after ischemic stroke.

Yang Liu, Ph.D.
Research Assistant Professor, Pharmacology & Neuroscience
To elucidate the molecular mechanisms underlying retinal ganglion cell degeneration in ocular diseases. The ultimate goal of Dr. Liu’s laboratory is to develop novel therapeutic interventions to rescue retinal ganglion cells and promote neuronal regeneration. 1) Mechanisms of neurodegeneration following optic nerve injury. Optic nerve injury induces apoptotic retinal ganglion cell death which mimics the pathology of glaucomatous neurodegeneration. New insights into pathogenic pathways involved in retinal ganglion cell degeneration will lead to the discovery and development of novel neuroprotective and regenerative strategies for treating retinal and central nervous system neurodegeneration. 2) Establishing conditionally immortalized retinal cell lines. The progressive death of retinal ganglion cells is responsible for the glaucomatous loss of vision. Cultured retinal cells are commonly used to better understand the cell and molecular biology of these cell types and help dissect the pathogenic pathways associated with glaucoma. Immortalized cells lines will provide an unlimited and reproducible source of retinal cells that will be widely used in visual science research.

Robert Luedtke, Ph.D.
Professor, Pharmacology & Neuroscience

Our laboratory is interested in development and pharmacological characterization of dopamine receptor subtype selective drugs for the treatment of individuals afflicted with Parkinson’s Disease or Alzheimer’s Disease. We have also worked to develop D3 vs. D2 dopamine receptor subtype selective drugs that can be used to assist in the rehabilitation of individuals who abuse psychostimulants, such as cocaine. We are also working on the development of sigma-1 receptor selective compounds as therapeutics for the prevention of neurodegenerative disorders including traumatic brain injury and dementia. These studies have provided insights into the function of D2-like dopamine and sigma-1 receptors in the brain.

Mallet Robert Mallet, Ph.D.
Regents Professor, Physiology & Anatomy

Dr. Robert Mallet’s research focuses on developing treatments to protect the heart and brain from heart attack, stroke, and cardiac arrest. These three diseases, which result from interruptions in the blood flow to the heart and/or brain, are among the leading causes of death and disability in the United States. Dr. Mallet’s team has discovered that breathing air containing reduced amounts of oxygen, for a few daily exposures lasting a few minutes each, causes adaptations in the heart and brain that make these organs much more resistant to interruptions in their blood flow. As a result, the damage to the heart and brain inflicted by temporary loss of blood flow is greatly decreased, enabling these vital organs to recover and resume their normal function. Current work in the Mallet laboratory is studying the favorable changes in the brain’s and heart’s biochemical makeup which underlie the adaptations to low oxygen, so that these adaptations can be safely harnessed to help human patients survive and recover from strokes, heart attacks, and cardiac arrest.
Vicki Nejtek, Ph.D.
Associate Professor, Pharmacology & Neuroscience

The Nejtek lab currently examines biomarkers and cognitive functioning outcomes to predict risks for Parkinson’s disease (PD) in veterans with and without mild traumatic brain injury (mTBI). We have successfully used BDNF, cortisol, and interleukin to identify treatment response, and have used cognitive functioning tests to predict mood state, and drug relapse. We have also used MRI with and without diffusion tensor imaging (DTI) to identify brain anomalies in patients with bipolar disorder with cocaine dependence in comparison to healthy controls. In a recent collaboration with Dr. Michael Salvatore, the Nejtek lab has received funding to conduct cross-species translational studies in parallel with our veterans with and without mTBI using a Parkinson’s genetic PINK1 rat model compared to wild type.

Sid O’Bryant, Ph.D.
Professor, Pharmacology & Neuroscience

Dr. O’Bryant is the Executive Director of the Institute for Translational Research (ITR) and the Dr. Joe and Peggy Schooler Endowed Chair in Pharmacology & Neuroscience. His research focuses on the generation and validation of precision medicine based approaches for addressing cognitive aging and neurodegenerative diseases. One component of this work is focused on understanding the biological, medical, pathological, and sociodemographic factors impacting health disparities in MCI and AD among Mexican Americans. He is contact PI of the HABLE study, which is designed to address these goals. His lab also works on blood-based biomarkers for detecting and targeted therapeutics for neurodegenerative diseases. He has created the AD Blood Test and PD Blood Test for primary care. He has also generated companion diagnostic tools to identify the specific subsets of patients most likely to benefit from a given therapy.

In-Woo Park, PhD
Associate Professor, Microbiology, Immunology & Genetics

Dr. Park’s research focuses on two main topics. The first is HIV-1-mediated aggravation of liver disease in HCV virus co-infectees. Due to the shared routes of infection, HIV-1/HCV co-infection is common, with 15~30% of all HIV-1-infected persons estimated to be co-infected with HCV. In the co-infected patients, HIV-1 is known to accelerate every stage of HCV-mediated liver disease progression. However, the molecular details regarding how co-infection of HIV-1 and HCV brings about a more severe deterioration of the liver than a single infection of HCV are unknown at present. Second, HIV-1 viral proteins are generated in a stage-specific manner; that is, regulatory proteins, such as Tat, Rev, and Nef, are expressed at the early stage, while structural proteins, such as Gag, Pol, and Env, are produced at the late stage of virus infection. Molecular regulation of viral gene expression in protein production has been studied comprehensively, whereas the
elimination processes using the ubiquitin proteasome system for the synthesized proteins after completion of their duties in the infected cells are generally unknown, representing a current gap in understanding the smooth stage-specific transitioning through the HIV-1 life cycle that is crucial to viral pathogenicity.

Nicole Phillips, Ph.D.
Assistant Professor, Microbiology, Immunology & Genetics

Dr. Phillips’ laboratory has a several areas of interest: 1) studies of mitochondrial DNA and mitochondrial function, in the context of various disease states such as Alzheimer’s disease, type 2 diabetes and preeclampsia (in collaboration with Dr. Stella Goulopoulou); 2) genetic aspects of pain and pain management, as the Director for Genomic Research for PRECISION Texas; 3) genetic risk for age-related disease and comorbidity patterns, via genome-wide genotyping, methylation profiling, and data mining.

Katalin Prokai, Ph.D.
Professor, Pharmacology & Neuroscience

The research in our laboratory is directed at medicinal chemistry-based drug design and delivery into the central nervous system with translational medicine in mind. We focus on agents (neuropeptides and estrogens) that are beneficial for brain and retinal health. Our projects involve pharmacokinetics, metabolism and drug distribution studies in early-phase drug discovery and the aging/diseased brain and retina. The current federally funded main project in our lab is entitled “A Novel Neuroprotective Approach for Glaucoma.”

Laszlo Prokai, Ph.D.
Professor, Pharmacology & Neuroscience

Dr. Prokai is the first Chair in Biochemistry endowed by the Houston-based Welch Foundation, one of the United States’ oldest and largest private funding sources for basic research, at the UNT Health Science Center. He is affiliated with the UNTHSC’s Department of Pharmacology and Neuroscience, and is an Associate Member of the Graduate Faculty at the Department of Chemistry and Biochemistry of the Texas Christian University. His interests focus on chemistry-driven multidisciplinary research and include the discovery, chemical biology, bioorganic and medicinal chemistry of central nervous system agents, as well as neuropeptides, proteomics and mass spectrometry. Dr. Prokai has maintained an actively funded research program from grant support by the National Institutes of Health (NIH) as well as through collaborations with pharmaceutical and chemical companies, and was the recipient of the 2017 Wilfred T. Doherty Award of the Dallas/Fort Worth Section of the American Chemical Society (ACS) and the 2017 Southwest ACS Regional Award.

Brandy Roane, Ph.D.
Associate Professor, Pharmacology & Neuroscience
Sleep is both a biological need and a choice, making the study of sleep both fascinating and complex. Insufficient sleep and poor quality sleep adversely impact health and wellness. Yet, 70% of Americans across all age groups experience one or both. The Sleep Research Lab, directed by Dr. Brandy M. Roane, examines the combined influence of physiological, behavioral, and social factors on health with a specific focus on: (a) exploring links between sleep and subsequent psychopathology and chronic medical conditions, and (b) developing effective prevention and intervention treatments. Research projects include clinical, laboratory, and public health studies such as experimentally manipulating sleep parameters and examining how these changes impact obesity-related behaviors such as physical activity and eating. The overarching goal of all work conducted in the Sleep Research Lab is to better understand how sleep may act as an environmental variable altering the trajectory of chronic medical conditions and psychopathology. Understanding how sleep influences these conditions would contribute greatly to health and wellness, as sleep is a targetable behavior.

Michael Salvatore, Ph.D.
Professor, Pharmacology & Neuroscience

Our lab goal is to understand the molecular basis for locomotor impairment in aging and Parkinson's disease. Once we have identified differences in specific dopamine or glutamate-regulating proteins that are associated with locomotor impairment, we can use approaches that target these proteins and determine if experimental changes in protein expression or function can improve locomotor function. Therefore, our immediate and long-term goals are to delineate optimal molecular, pharmacological, and non-invasive (exercise, calorie restriction) approaches that can target proteins associated with motor impairment. Once we have gained such results in rat models, we aim to translate these findings into the human condition. Ultimately, we use our results toward the goal of reducing or eliminating locomotor impairment associated with aging and Parkinson’s disease. Dr. Salvatore has obtained funding from the National Institute on Aging and Department of Defense to maintain this research program and has served as a reviewer for multiple funding mechanisms for the Parkinson’s Foundation.

Derek Schreihofer, Ph.D.
Associate Professor, Pharmacology & Neuroscience

My laboratory is interested in the prevention and treatment neurodegeneration. Using cell and animal models of stroke, traumatic brain injury, and metabolic syndrome, we examine the factors that reduce injury and prevent or delay the onset of motor and cognitive dysfunction. Ongoing projects 1) examine how steroid hormones like estrogen, testosterone, and natural estrogens from plants regulate brain function in injury and aging and the underlying mechanisms of steroid action; 2) determine the role of sport-related head injury in aging-induced neurodegeneration and Alzheimer’s disease; 3) determine precursors of cognitive decline associated with metabolic syndrome; and 4) identify new drugs for treating stroke injury. Our goal is to determine the conditions in which these compounds can be safely and
effectively used to provide ongoing brain health and treat brain injury and disease. My lab uses rodent injury models to study behavior, gene expression, cell signaling, and pharmacological interventions. In vitro, we make use of cell lines, primary cell cultures, and organotypic brain slice cultures with fluorescent markers and live cell imaging.

Ann Schreihofer, Ph.D.
Professor, Physiology & Anatomy

Dr. Schreihofer’s goal is to better understand how the brain controls blood pressure, both under normal conditions and in the presence of disorders that raise blood pressure. Currently, my laboratory focuses on two conditions that lead to high blood pressure: obesity and sleep apnea. Both of these conditions change how the brain controls blood pressure, but the mechanisms are not well understood. Although, ideally, obesity and sleep apnea can be managed, many find it difficult to control body weight in the long term and not may tolerate current treatments for sleep apnea. As these conditions continue to become more prevalent, the cardiovascular disease that accompanies them also becomes a major health issue nationwide. The current treatments for high blood pressure are numerous, and many medications act within the brain to control blood pressure.

Ritu Shetty, PhD., R. Ph.
Research Assistant Professor, Pharmacology and Neuroscience

Long-lasting drug related memories can play an important role in addiction cycle and relapse. I am interested in understanding the mechanisms behind formation and consolidation of memories; predominantly drug-related memories. The main focus of my research is to understand the acquisition and development of drug-seeking behavior using various rodent models, and also identify molecular targets in different brain regions involved in expression of such behaviors.

Xiangrong Shi, PhD
Associate Professor, Pharmacology & Neuroscience

Dr. Shi lab focuses on clinical research and application. Research interests include to apply physical exercise training as prophylactic measure for countering human cardiorespiratory and neurovascular aging based on testing cerebral blood flow and autonomic nervous function under physical and mental challenges; and to apply intermittent hypoxia preconditioning as novel therapeutic and rehabilitative intervention for improving neurovascular and neurocognitive functions in elderly with ischemic stroke and Alzheimer disease/dementia.
G protein-coupled receptors (GPCRs) remain the single largest group of “druggable” proteins that continue to find tremendous utility in drug discovery programs. In 1994, Siderovski was the first to report the sequencing of a “Regulator of G protein Signaling” (RGS protein): ‘G0/G1-switch gene-8’ or G0S8 (subsequently renamed RGS2). What Siderovski originally identified as the G0S8-homology ("GH") domain in proteins from several eukaryotic genomes (human, *Drosophila melanogaster*, *Caenorhabditis elegans*, *Saccharomyces cerevisiae*) is now known as the "RGS domain", a 130 amino-acid domain that contacts G-alpha switch regions to stabilize the transition state, thus accelerating GTP hydrolysis. Discovery of this superfamily of proteins that negatively regulate G-alpha-dependent signaling resolved a prior paradox that GPCR-stimulated signals are seen to terminate much faster in vivo than predicted from the slow GTP hydrolysis rates exhibited by purified G-alpha subunits in vitro. RGS proteins are now considered key desensitizers of heterotrimeric G protein signaling and, as such, as new drug discovery targets. The lab is currently pursuing RGS protein inhibitors as potential agents against cocaine and opioid abuse.

Dorota Stankowska, Ph.D.
Research Assistant Professor, Pharmacology & Neuroscience

Dr. Stankowska’s laboratory research focuses on the development of strategies for neuroprotection in glaucoma. Specifically, we are testing various small molecules and adeno-associated viral gene therapies for their ability to attenuate neurodegeneration in animal models of glaucoma. We also aim to unravel cellular and molecular mechanisms underlying the pathophysiology of glaucoma. Concepts/techniques: We carry out these studies using in vitro rat primary retinal ganglion cell cultures, ex vivo adult rat retinal explants, and various in vivo rodent models of glaucoma. We use visual function tests including pattern ERG and optomotor test to determine the efficacy of clinically relevant experimental pharmacotherapies. Her ongoing studies have the potential to develop novel therapeutic agents for neuroprotection in glaucoma.

Dong-Ming Su, Ph.D.
Professor, Microbiology, Immunology & Genetics

The strength of Dr. Su’s research projects is using and generating genetically-engineered animal models in understanding genetic and epigenetic regulation of the T-cell immune system and its microenvironment during aging. Our aim is to determine mechanistic insights into poor (immunosenescence) and harmful (autoimmune) T-cell immunity in the elderly for developing rejuvenation strategies to combat age-related chronic inflammatory diseases and cancer recurrence. Our current NIH- & AAI-funded and potentially NIH-funded projects include: “Balance of thymic negative selection vs. Treg cell generation in the elderly (NIH-funded R01)”; “Biased Treg TCR specificity and its impact on immunity in the elderly (Potential NIH
R01); and “Role of the central immune organ in cancer chemoimmunotherapy (AAI-funded fellowship).

Nathalie Sumien, Ph.D.
Associate Professor, Pharmacology & Neuroscience

My scientific interests lies with the study of interventions to alleviate the effects of aging and age-related diseases on motor, cognitive and affective function and the role oxidative stress and inflammation may play in the success of these interventions. Currently, we have three on-going studies: (1) hyperbaric oxygen therapy as a novel intervention for Alzheimer’s Disease, (2) developing a model of childhood leukemia “chemobrain” to study interventions, and (3) long-term consequences of psychostimulants on brain function. All our studies are done in rodents and include male and females to allow for better understanding of the conditions and interventions.

Victor Uteshev, Ph.D.
Associate Professor, Pharmacology & Neuroscience

Many neurological disorders remain untreatable and continue to cause incalculable losses to productivity, independence and overall quality of life among patients globally. Currently available approaches to the treatment of ischemic stroke and traumatic brain injury do not adequately meet clinical and social demands. Discovery and development of drugs with clinical efficacy presents tremendous intellectual and commercial challenges. Dr. Uteshev was trained as neuro-pharmacologist and his lab focuses on developing novel therapeutic strategies and pharmacological tools to treat ischemic stroke, traumatic brain injury and other challenging neurological disorders linked to brain injury and inflammation. The prime focus is the cholinergic system and α7 nicotinic acetylcholine receptors (nAChRs). These receptors are commonly expressed throughout the body including neuronal, glial and immune tissues. A balanced activation of α7 nAChRs inhibits inflammation and elevates brain resistance to ischemic and traumatic injury. Accordingly, whenever a brain injury occurs, two simultaneous processes are automatically initiated as the injury stimulates α7 nAChRs: first, the brain tissue near the site of injury becomes protected from spreading injury; and second, the injury-induced inflammation is mitigated to prevent additional injury by the immune system. Positive allosteric modulators (PAMs) of α7 nAChRs hold considerable promise as stroke and TBI treatment. PAMs augment α7 activation by endogenous agonists, choline and ACh, allowing for a gentle modulation of immune response and recovery from injury.

Shaohua Yang, M.D., Ph.D.
Regents Professor, Pharmacology & Neuroscience

In biology, energy is an attribute of all living organism from bacterial to human being. The conversion between mass and energy are fundamental to our understanding of the biological
processes defined as metabolism by which living organisms cycle energy through different mechanisms to produce the necessary molecules and perform the necessary functions of life. As the metabolism goes on, the life goes on. Dr. Yang's laboratory is interested in understanding the mechanism and discovery of interventions for brain aging and aging-related neurological disorders, including ischemic stroke, vascular dementia, and Alzheimer's dementia. His research has been focusing on the brain metabolism and using cell culture and rodent models of ischemic stroke and neurodegenerative diseases to address these issues. Students join Dr. Yang's laboratory are expected to receive extensive training in cellular and molecular neuroscience, cognitive and behavioral neuroscience, and rodent models of ischemic stroke and neurodegenerative diseases. Students will also have opportunity to be involved in studies using human brain tissue from the Brain Bank.

Thomas Yorio, Ph.D.
Professor, Pharmacology & Neuroscience

Dr. Yorio's laboratory focuses on glaucoma. Areas of interest include aqueous humor dynamics, identifying potential targets for neuroprotection with an emphasis and on the role of optic nerve astrocytes in neurodegeneration. Additional studies focus on neuroprotective properties of sigma-1 receptors and in the area of glucocorticoid pharmacology and ocular hypertension, specifically on understanding the role of glucocorticoid receptor (GR) beta in dampening the ocular hypertensive response of glucocorticoids.

Zhengyang Zhou, Ph.D.
Assistant Professor, Biostatistics & Epidemiology

My major research interest is the methodological development of statistical genetics, including detecting gene – environment interaction, controlling for population stratification in genome-wide association studies and developing powerful genetic association tests. I am actively seeking opportunities for collaboration with scientific and clinical investigators in biostatistics or statistical genetics. I have been involved in various genetic studies for human complex diseases, such as heart disease, Alzheimer's disease, fatty liver disease, and Fuch’s endothelial corneal dystrophy.
Requirements

The requirements below are in addition to the GSBS requirements listed in the GSBS Degree Programs chapter of the UNTHSC Catalog.

I. REQUIRED COURSES for Doctoral Degree*
 Functional Neuroscience (PHRM 6400) - 4 SCH
 Basic and Clinical Pharmacology (PHRM 6410) - 4 SCH

 *Master’s Degree students are encouraged, but not required to take Functional Neuroscience or Basic and Clinical Pharmacology

II. SEMINAR AND JOURNAL CLUB COURSES
 Seminar in Current Topics (PHRM 5140) - 1 SCH
 Current Topics in Pharmacology (PHRM 6140) - 1 SCH

 Seminars
 All MS and PhD students in Pharmacology and Neuroscience are required to attend all departmental seminars in their entirety (whether they are taking the associated course for credit or not) and to meet with invited seminar speakers when assigned. Students are required to register for Seminar in Current Topics (PHRM 5140) for credit once.

 Journal Club
 MS students in Pharmacology and Neuroscience are required to attend all journal clubs until they graduate; PhD students are required to attend journal clubs for 3 long semesters (Spring year 1, and Fall/Spring year 2). Students are required to take Current Topics in Pharmacology & Neuroscience (PHRM 6140) for course credit once.

III. WORKS IN PROGRESS (WIPs)
 All Pharmacology and Neuroscience students are required to attend all Works in Progress (WIPs) sessions. Beginning in year 2, all students are required to present their work in WIPs sessions.

IV. ELECTIVE COURSES (Must include at least 2 SCH in PHRM courses, excluding Special Problems courses)

 Elective courses offered by other departments can also be taken, provided that the required electives in Pharmacology and Neuroscience are completed. The student is referred to the Graduate Catalog for course offerings in other departments.

 Offered every semester:
 Techniques in Biomedical Sciences: Multifactor Experiments (BMSC 5170.400) - 1 SCH

 Offered every year:
 Mitochondria and Complex Diseases (PHRM 6200) - 2 SCH (Spring)
 Methods in Molecular Biology (PHRM 6440) – 4 SCH (Summer)
Offered in “even” fall semesters:
Drug Discovery and Design (PHRM 6270) - 2 SCH
Receptors and Drug Action (PHRM 6480) - 4 SCH
Current Strategies and Challenges in Drug Discovery (PHRM 6280) – 2 SCH

Offered in “even” spring semesters:
Neurobiology of Aging (PHRM 5300) - 3 SCH

Offered in “odd” fall semesters:
Neuropharmacology (PHRM 5470) - 4 SCH
Receptors and Second Messenger Signaling (MIMG 6435) - 2 SCH
Kinases and Phosphatases (MIMG 6436) – 2 SCH

Offered in “odd” spring semesters:
Biomedical Mass Spectrometry (PHRM 6361) - 1-2 SCH

Offered on demand
Advances in Behavioral Pharmacology (PHRM 6330)- 3 SCH
Advances in Molecular Pharmacology (PHRM 6320)- 3 SCH
SAMPLE DEGREE PLANS

I. **Master of Science Degree Plan** – The sample below does not imply that all requirements for graduation will be met with 30 SCH of course work. While it is possible to complete the requirements in this time frame, most research projects require additional semesters to complete. The typical time-to-degree for MS students is two years.

<table>
<thead>
<tr>
<th>Dept</th>
<th>Course Number</th>
<th>Title</th>
<th>SCH</th>
<th>Semester to be Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMSC</td>
<td>5150</td>
<td>Lab Rotations</td>
<td>2</td>
<td>Fall Year 1</td>
</tr>
<tr>
<td>BMSC</td>
<td>6200</td>
<td>Intro to Experimental Design & Biostatistical Methods</td>
<td>2</td>
<td>Fall Year 1</td>
</tr>
<tr>
<td>BMSC</td>
<td>6201</td>
<td>Fundamentals of Biomedical Science I</td>
<td>2</td>
<td>Fall Year 1</td>
</tr>
<tr>
<td>BMSC</td>
<td>6202</td>
<td>Fundamentals of Biomedical Science II</td>
<td>2</td>
<td>Fall Year 1</td>
</tr>
<tr>
<td>BMSC</td>
<td>6203</td>
<td>Fundamentals of Biomedical Science III</td>
<td>2</td>
<td>Fall Year 1</td>
</tr>
<tr>
<td>BMSC</td>
<td>6203</td>
<td>Fundamentals of Biomedical Science IV</td>
<td>2</td>
<td>Fall Year 1</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td></td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Milestones to be completed: Selection of Major Professor, Change of Discipline

<table>
<thead>
<tr>
<th>Dept</th>
<th>Course Number</th>
<th>Title</th>
<th>SCH</th>
<th>Semester to be Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMSC</td>
<td>5160</td>
<td>Biomedical Ethics</td>
<td>1</td>
<td>Spring Year 1</td>
</tr>
<tr>
<td>BMSC</td>
<td>5315</td>
<td>Principles of Scientific Communication</td>
<td>2</td>
<td>Spring Year 1</td>
</tr>
<tr>
<td>BMSC</td>
<td>5998</td>
<td>Individual Research</td>
<td>0-7</td>
<td>Spring Year 1</td>
</tr>
<tr>
<td>PHRM</td>
<td>5140</td>
<td>Seminar in Current Topics</td>
<td>1</td>
<td>Spring Year 1</td>
</tr>
<tr>
<td>PHRM</td>
<td>6140</td>
<td>Current Topics in Pharmacology</td>
<td>1</td>
<td>Spring Year 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advanced Courses</td>
<td>0-7</td>
<td>Spring Year 1</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td></td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Milestones to be completed: Designation of Advisory Committee, Degree Plan. The Research Proposal must be filed prior to enrollment in Thesis (BMSC 5395).

<table>
<thead>
<tr>
<th>Dept</th>
<th>Course Number</th>
<th>Title</th>
<th>SCH</th>
<th>Semester to be Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMSC</td>
<td>5395</td>
<td>Thesis</td>
<td>0-6</td>
<td>Summer Year 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advanced Courses</td>
<td>0-6</td>
<td>Summer Year 1</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total for Degree</td>
<td></td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>
II. **Doctor of Philosophy Degree Plan** - The sample below does not imply that all requirements for graduation will be met with 93 SCH of course work. While it is possible to complete the requirements in this time frame, most research projects require additional semesters to complete. The typical time-to-degree for PhD students is four-to-five years.

<table>
<thead>
<tr>
<th>Dept</th>
<th>Course Number</th>
<th>Title</th>
<th>SCH</th>
<th>Semester to be Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMSC</td>
<td>5150</td>
<td>Lab Rotations</td>
<td>2</td>
<td>Fall Year 1</td>
</tr>
<tr>
<td>BMSC</td>
<td>6200</td>
<td>Intro to Experimental Design & Biostatistical Methods</td>
<td>2</td>
<td>Fall Year 1</td>
</tr>
<tr>
<td>BMSC</td>
<td>6201</td>
<td>Fundamentals of Biomedical Science I</td>
<td>2</td>
<td>Fall Year 1</td>
</tr>
<tr>
<td>BMSC</td>
<td>6202</td>
<td>Fundamentals of Biomedical Science II</td>
<td>2</td>
<td>Fall Year 1</td>
</tr>
<tr>
<td>BMSC</td>
<td>6203</td>
<td>Fundamentals of Biomedical Science III</td>
<td>2</td>
<td>Fall Year 1</td>
</tr>
<tr>
<td>BMSC</td>
<td>6203</td>
<td>Fundamentals of Biomedical Science IV</td>
<td>2</td>
<td>Fall Year 1</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Milestones to be completed: Selection of Major Professor, Change of Discipline

<table>
<thead>
<tr>
<th>Dept</th>
<th>Course Number</th>
<th>Title</th>
<th>SCH</th>
<th>Semester to be Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMSC</td>
<td>5160</td>
<td>Biomedical Ethics</td>
<td>1</td>
<td>Spring Year 1</td>
</tr>
<tr>
<td>BMSC</td>
<td>5315</td>
<td>Principles of Scientific Communication</td>
<td>2</td>
<td>Spring Year 1</td>
</tr>
<tr>
<td>PHRM</td>
<td>5140</td>
<td>Current Topics in Pharmacology</td>
<td>1</td>
<td>Spring Year 1</td>
</tr>
<tr>
<td>PHRM</td>
<td>6400</td>
<td>Functional Neuroscience</td>
<td>4</td>
<td>Spring Year 1</td>
</tr>
<tr>
<td>PHRM</td>
<td>6410</td>
<td>Basic and Clinical Pharmacology</td>
<td>4</td>
<td>Spring Year 1</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Milestones to be completed: Designation of Advisory Committee, Degree Plan

<table>
<thead>
<tr>
<th>BMSC</th>
<th>6998</th>
<th>Individual Research</th>
<th>0-6</th>
<th>Summer Year 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Advanced Courses</td>
<td>0-6</td>
<td>Summer Year 1</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BMSC</th>
<th>6998</th>
<th>Individual Research</th>
<th>0-11</th>
<th>Fall Year 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHRM</td>
<td>5140</td>
<td>Seminar in Current Topics</td>
<td>1</td>
<td>Fall Year 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advanced Courses</td>
<td>0-11</td>
<td>Fall Year 2</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Milestone to be completed: Oral Qualifying Examination

<table>
<thead>
<tr>
<th>BMSC</th>
<th>6998</th>
<th>Individual Research</th>
<th>0-12</th>
<th>Spring Year 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Advanced Courses</td>
<td>0-12</td>
<td>Spring Year 2</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BMSC</th>
<th>6998</th>
<th>Individual Research</th>
<th>0-6</th>
<th>Summer Year 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Advanced Courses</td>
<td>0-6</td>
<td>Summer Year 2</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Milestone to be completed: A Research Proposal must be on file prior to enrollment in Doctoral Dissertation (BMSC 6395)
<table>
<thead>
<tr>
<th>Dept</th>
<th>Course Number</th>
<th>Title</th>
<th>SCH</th>
<th>Semester to be Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMSC</td>
<td>6998</td>
<td>Individual Research</td>
<td>0-9</td>
<td>Fall Year 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advanced Courses</td>
<td>0-9</td>
<td>Fall Year 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subtotal</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>BMSC</td>
<td>6998</td>
<td>Individual Research</td>
<td>0-9</td>
<td>Spring Year 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advanced Courses</td>
<td>0-9</td>
<td>Spring Year 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subtotal</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>BMSC</td>
<td>6998</td>
<td>Individual Research</td>
<td>0-6</td>
<td>Summer Year 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advanced Courses</td>
<td>0-6</td>
<td>Summer Year 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subtotal</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>BMSC</td>
<td>6395</td>
<td>Doctoral Dissertation</td>
<td>9</td>
<td>Fall Year 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subtotal</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total for Degree</td>
<td>93</td>
<td></td>
</tr>
</tbody>
</table>
Advancement to Candidacy

I. Master of Science

Advancement to master’s Candidacy is achieved after successful completion of a research proposal.

Each student will be required to submit a research proposal to his/her advisory committee. The student and his/her mentor will decide upon the format of the research proposal: 1) traditional proposal with no page limits, or 2) NIH style grant including all its limitations (F31, R21). Traditional proposal format is as follows: Abstract (1pg), Specific Aims (1pg), Background and Pilot Studies (3-5pgs), Experimental Design and Methods including an anticipated results section (4-5pgs), References (unlimited). For NIH-style grant format, refer to the National Institutes of Health website for current information.

After conferring with the major professor, the student will set a meeting with his/her advisory committee to present and defend the proposal. The research proposal should be provided to the advisory committee no later than 10 days prior to the defense. The advisory committee will determine if the proposal is satisfactory. The proposal must be approved by the advisory committee and submitted to the GSBS during the semester prior to the student’s final semester, at the latest. Submission of an approved research proposal is prerequisite for registration in Thesis (BMSC 5395).

Research Proposal Guidelines and the Research Proposal approval forms are available on the GSBS Forms and Guidelines website.

Once a master’s student has successfully advanced to candidacy, he/she may use “MS Candidate” as a title on any general business correspondence such as business cards, e-mail messages, etc.
II. Doctor of Philosophy

Advancement to Doctoral Candidacy is a two-step process. The first step of this process is successful completion of the Oral Qualifying Examination, a common rite of passage in most doctoral programs regardless of the field of study. The second step of this process is the preparation and defense of a research proposal. Below are details of the Pharmacology and Neuroscience specifications for advancing to candidacy.

A. Oral Qualifying Examination

The doctoral student will successfully defend his/her general knowledge of pharmacology and neuroscience in an Oral Qualifying Examination (OQE) before an examination committee comprised of 3-5 members of the Pharmacology & Neuroscience graduate faculty and the student’s university member. The graduate advisor will chair these examinations. The committee will be appointed by the department chair and graduate advisor. The student’s major professor may not serve on the examination committee, but may, at the request of the student, be present for the examination as a silent observer. This examination will be held during the Summer semester of Year 1.

The student will be given a list of questions covering topics from core and required advanced courses. The student will be given one hour of preparation time to review the questions and select a specified number of questions upon which he/she will be examined. The student will address the selected topics as well as any questions from the committee that may arise from the question and answer session.

Successful completion of this requirement will be determined by the OQE committee. If unsuccessful on the first attempt, a student may be allowed to retake the examination. The second examination should be completed within twelve weeks of the original examination, unless otherwise specified by the examination committee. If unsuccessful on the second attempt, the students will be required to transfer to the MS degree program to complete the requirements for the MS degree.

It is the responsibility of the student to obtain signatures from the examination committee members, university member, graduate advisor, and department chair upon completion of the exam. The appropriate form may be obtained from the GSBS Forms and Guidelines website.

B. Research Proposal

Each student will be required to submit a research proposal to his/her advisory committee. The student and his/her mentor will decide upon the format of the research proposal: 1) traditional proposal with no page limits, or 2) NIH style grant including all its limitations (F31, R21)). Traditional proposal format is as follows: Abstract (1pg), Specific Aims (1pg), Background and Pilot Studies (3-5pgs), Experimental Design and Methods including an anticipated results section (4-5pgs), References (unlimited). For NIH-style grant format, refer to the National Institutes of Health website for current information.
After conferring with the major professor, the student will set a meeting with his/her advisory committee to present and defend the proposal. The research proposal should be provided to all committee members at least 10 days prior to the presentation to the advisory committee. The advisory committee will determine if the proposal is satisfactory.

For PhD students, the proposal should be completed within a year of having passed the OQE. The proposal must be approved by the advisory committee and submitted to the GSBS during the semester prior to the student’s final semester, at the latest. Submission of an approved research proposal is prerequisite for registration in Doctoral Dissertation (BMSC 6395)

Research Proposal Guidelines and the Research Proposal approval forms are available on the GSBS Forms and Guidelines website.

Once a doctoral student has successfully advanced to candidacy, he/she may use “PhD Candidate” or “Doctoral Candidate” as a title on any general business correspondence such as business cards, e-mail messages, etc. In addition, the minimum number of credit hours required for full-time enrollment drops from 12 SCH to 9 SCH in long semesters.