Case 1: Classification of Lower Urinary Tract Symptoms (LUTS) and Urinary Incontinence (UI)

LEARNING OBJECTIVES:
1. Discuss screening and identification of LUTS;
2. identify different causes of LUTS;
3. demonstrate an awareness of what can be accomplished in the PCP office in regards to evaluation;
4. specify treatment options for OAB and BPH; and
5. examine when to refer for specialist evaluation

Case/Patient #1A:
A 62 y/o G4P4 obese female complains of urgency, frequency, and urgency incontinence. She voids 10 times/day and 2 times/night, accompanied by urgency (compelling need to void) 50% of the time and one or two episodes of urgency incontinence per day.

Case/Patient #1B:
A 42 y/o G2P2 female "weekend athlete" in otherwise excellent health complains of urinary loss with "effort". She reports bothersome urinary leakage "drops to squirt" with minimal sensation during a cough, laugh, sneeze, or during physical exertion. She reports no associated urinary urgency, frequency, or nocturia.

Case/Patient #1C:
A 79 y/o community dwelling female has recently been discharged from the hospital following THR secondary to a fall, during which time she had an indwelling Foley catheter. She complained of minimal voiding symptoms prior to admission. Most bothersome is urinary frequency and urinary incontinence with minimal sensation especially at night on the way to the bathroom (bedside commode). She also complains of the sensation of incomplete emptying.

Case/Patient #1D:
A 67 y/o male complains of nocturia and recent onset of urgency incontinence. On further questioning he admits to an impaired flow and decreased emptying. He has been taking an over-the-counter cold medication for the past week.
QUESTION 1: The assessment of urinary incontinence in every patient should include:
A. Establish a presumptive or condition specific diagnosis, and exclude underlying organ-specific related or unrelated conditions that would require intervention.
B. Assess the level of bother and desire for intervention from information obtained from the patient or caregiver.
C. Institute empiric or disease specific primary therapy based on the risk and benefit of the untreated condition, the nature of the intervention and the alternative therapies.
D. Prompt the recommendation of additional more complex testing or specialist referral.
E. All of the above

DISCUSSION OF QUESTION ONE
The answer is E.

Lower Urinary Tract Symptoms (LUTS) cannot be used to make a definitive diagnosis since they may also indicate pathologies other than Lower Urinary Tract Disease (LUTD). LUTS may include Overactive Bladder (OAB) a syndrome which may be associated with urgency incontinence (OAB-wet) or without incontinence (OAB-dry) and should prompt consideration and as appropriate, an evaluation for other similar symptom based pathology.

Urinary incontinence can be described by symptoms or storage and emptying function. Incontinence can be qualified by frequency, severity, precipitating factors, social impact, effect on hygiene and quality of life, the measures used to contain the leakage and whether or not the individual seeks or desires help.

Urinary incontinence should be categorized by symptoms into urgency incontinence, stress incontinence, or overflow incontinence – or mixed (combined) incontinence. Conservative (non-invasive) therapies may then be started based on this classification to treat the most troublesome component, or either component of the incontinence. More sophisticated testing (eg. urodynamics studies) is not required prior to the institution of conservative therapy.

A bladder diary is helpful in order to document and communicate the frequency of voids and incontinence episodes experienced by the patient. The AUA symptom score is useful in male patients with LUTS although it does not include a specific question about urinary leakage. Additional information as appropriate may include volume of intake, voided volume, and/or symptoms such as urgency or discomfort.

Referral to a specialist is recommended for hematuria (visible or microscopic), urinary tract infection (persistent or recurrent), prolapse (symptomatic or below the introitus), obstruction or retention (symptoms or findings of palpable bladder, hydronephrosis or obstructive renal insufficiency), suspected neurological disease, mass (urethral, bladder or pelvic - benign or malignant), fistula (urinary or bowel), a history of prior pelvic surgery or radiation (incontinence, oncologic).

Specific tests (urinalysis, urine culture, post voiding residual urine):
It is considered standard to perform a urinalysis either by using a dipstick test or examining the spun sediment. If a dipstick test is used, it is recommended that a “multiproperty” strip that includes fields for hematuria, glucose, leukocyte esterase and nitrite tests be chosen. Dipstick is not as accurate as urine culture, being specific for infection
but not sensitive. Additional tests available on urine dipstick strips, such as a protein, bilirubin, ketones and pH, may be helpful in the broader medical management of patients. However, they are not essential in the context of evaluation of the patient with urinary incontinence or lower urinary symptoms.

The PVR is the volume of urine remaining in the bladder following a representative void. PVR measurement can be accomplished within a few minutes of voiding either by catheterization or by calculation of bladder volume using a portable ultrasound scanner. An increased PVR alone is not necessarily problem, but if combined with high pressures it can lead to upper tract problems. If related to UTIs, PVR may need to be treated since UTIs may not be eradicated in the presence of an infected residual. A significant PVR also decreases the functional bladder capacity and contributes to urgency/frequency, urge incontinence and nocturia.

A significant PVR also decreases the functional bladder capacity and contributes to urgency/frequency, urge incontinence and nocturia. The AHCPR guidelines state that, in general, a PVR less than 50 ml is considered adequate bladder emptying and over 200 ml is considered inadequate emptying. The PVR that is “safe” for the institution of medical management of patients. However, they are not essential in the context of evaluation of the patient with urinary incontinence or lower urinary symptoms.

QUESTION 2A: Urinary incontinence (UI) may be the result of an:
A. Overactive bladder (urgency urinary incontinence (UUI))
B. Overactive outlet (urinary obstruction – overflow incontinence)
C. Underactive bladder (urinary retention – overflow incontinence)
D. Overactive outlet (stress urinary incontinence (SUI))
E. All of the above

QUESTION 2B: Match the mostly likely patient to have each condition listed above with the clinical presentation:
A. Overactive bladder
B. Overactive outlet
C. Underactive bladder
D. Underactive outlet

QUESTION 2C: The most likely patient to have the above signs or symptoms as a primary symptom is:
A. “Urgency” – urgency incontinence – overactive bladder
B. Poor flow – obstruction – overactive outlet/bph
C. Leakage with cough – stress incontinence – underactive outlet
D. Palpable bladder – urinary retention – underactive bladder

DISCUSSION OF QUESTION TWO

The answer to 2A is E.
The answer to 2B is: A=1A; B=1D; C=1C; D=1B.
The answer to 2C is: A=1A; B=1D; C=1B; D=1C.

A: Function and activity classification divides the lower urinary tract into its two anatomic areas: the bladder (detrusor) and bladder outlet (sphincter) during the physiologic functions of storage (filling on the left side of the diagram) and emptying (voiding on the right side of the diagram). The bladder or outlet activity is described as “overactive” or “underactive.” (B) In storage the bladder accommodates urine low pressure with competent outlet. In emptying the bladder contracts to completion with unobstructed outlet. B: Patient #1 has symptoms of urgency incontinence consistent with an overactive bladder (elevated pressure). LUTS associated with detrusor overactivity (uninhibited bladder contractions) are urgency, frequency, nocturia, and urinary urgency incontinence. Patients may present with overactive bladder dry (without urinary leakage). The treatment for overactive bladder involves behavioral intervention, pelvic floor physiotherapy, and antimuscarinic agents. Patient #2 has symptoms of “stress incontinence”. The patient looses urine with exertion due to an underactive outlet (inadequate outlet resistance). LUTS associated with poor anatomic support of the anterior vaginal wall and sphincteric mechanism in female patients or trauma to the sphincteric mechanism during prostate surgery in the male are urinary leakage with effort. Treatment for stress incontinence in the female patient is physiotherapy or “suspension” – there are no approved medications. Treatment for the male patient is physiotherapy or an implant for sphincteric “compression”. Patient #3 has symptoms of urinary retention secondary to an underactive bladder (poor contractility). This type of urinary retention with “overflow” incontinence may be secondary to bladder overdistention, pharmacological inhibition, or a peripheral neurological lesion. Acute treatment is bladder “rest” with a Foley catheter, discontinuation of anticholinergic medications, and an evaluation for acute/chronic peripheral neuropathy. In more chronic cases self intermittent catheterization may be indicated. Patient #4 has symptoms of overactive outlet (bladder outlet obstruction secondary to BPH exacerbated by an alpha-adrenergic agent). Treatment is relief of the obstruction by pharmacological or surgical means.

Stress urinary incontinence (SUI) – Underactive Outlet
Symptom: the involuntary loss of urine on effort or exertion (lift, strain, cough, sneeze)
Activity: underactive outlet
Condition: stress incontinence the involuntary loss of urine resulting from an increase in intra-abdominal pressure that overcomes the resistance of the bladder outlet in the absence of a true bladder contraction. The decrease in bladder outlet or urethral resistance may result from poor anatomic support of the bladder neck (urethral hypermobility/SUI-A or a loss of urethral function (intrinsic sphincter deficiency [ISD] [SUI-ISD]) or commonly a mixture.
Etiology: stress urinary incontinence is a condition of the bladder outlet. The most common cause in the female patient is disruption of anatomic supports or innervations to the urethral sphincter secondary to childbirth. The most common cause in the male patient is iatrogenic damage to the urinary sphincter during prostate surgery.
Clinical confusion: the patient describes the symptom of urinary loss with “activity” but the etiology of involuntary leakage is actually an uninhibited bladder contraction. SUI should have urinary loss synchronous with “effort”; similarly, many patients will describe SUI as a sensation, which is confused with “urgency”; finally, stress and urgency incontinence may coexist.

Urgency urinary incontinence (UUI) – Overactive Bladder
Symptom: the loss of urine with the sensation of urgency, voiding before the ability to toilet. Idiopathic Detrusor Overactivity, defined as overactivity when there is no clear cause. Neurogenic Detrusor Overactivity is defined as overactivity due to a relevant neurological condition. Neurogenic detrusor overactivity may be associated with decreased or absent sensation.
Activity: overactive bladder (OAB wet) – detrusor overactivity
Condition: UUI – the involuntary loss of urine resulting from an increase in bladder pressure secondary to detrusor overactivity (an uninhibited bladder contraction).
Etiology: detrusor overactivity is primarily idiopathic. Patients may demonstrate other symptoms associated with “urgency” (frequency, urgency, nocturia) without urinary loss (OAB dry). Obstruction (overactive outlet) may precipitate overactive bladder and is associated with obstruction secondary to benign prostatic enlargement. Neurogenic bladder is the result of a suprasacral spinal or intracranial neurologic lesion that results in uncontrolled reflex contractions (detrusor hyperreflexia).
Clinical confusion: the patient has decreased sensation and loses urine from motor activity of the detrusor without the feeling of “urgency.” OAB is a syndrome consisting of the symptoms “urgency, with or without urgency incontinence, usually with frequency and nocturia,” suggestive of detrusor overactivity but inclusive of “urgency and frequency without incontinence” OAB dry (see below)

Mixed urinary incontinence (MUI) – Overactive Bladder and Underactive Outlet
Symptom: mixed symptoms of UUI and SUI, urinary loss with effort and with urgency
Clinical confusion: The underlying pathophysiology of stress, urge, or overflow incontinence may coexist, as well as difficulty in eliciting an accurate history.

QUESTION 3: The most useful way to differentiate urgency urinary incontinence (UUI) from stress urinary incontinence (SUI) in a patient with incontinence is:

A. History of urinary loss with effort versus urinary loss with “urgency”
B. Assess the urinary flow by observation
C. Provocative “cough” test
D. Palpation of the abdomen for bladder distention
E. A and C

DISCUSSION OF QUESTION THREE

The answer is E.

Determining whether urine is involuntarily lost with effort or exertion, or on coughing or sneezing, is commonly used to help identify stress incontinence. For example, a patient can be asked, “Do you lose urine during sudden physical exertion, lifting, coughing, or sneezing?” To help diagnose urge incontinence, the patient is asked about the association between involuntary urinary leakage and feelings of urinary urgency. An example of such a question is “Do you experience such a strong and sudden urge to void that you leak before reaching the toilet?” A number of questionnaires exist to help differentiate these conditions in a more standardized way. Urgency incontinence is also more likely to be associated with large volume urine loss, while the volume of urine lost with episodes of stress incontinence tends to be small. However, the amount of urine lost during an incontinence episode of any type can depend on the amount of urine present in the bladder at that time. It is unusual for a male patient to have urine loss secondary to an underactive bladder (spincter insufficiency or “stress incontinence”) without a prior history of prostatic surgery (radical prostatectomy or surgical treatment for benign enlargement with obstruction). When evaluating a woman with urinary incontinence, a systematic approach that includes a history, physical examination, and stress test increases the likelihood of correctly classifying the type of incontinence (for stress). The most helpful component of the assessment for determining the presence of urge incontinence is a history of urine loss associated with urinary urgency

Physical Examination.

A physical examination is an important component of the assessment, because it may detect modifiable factors or associated conditions and help determine the type of urinary incontinence. The American College of Obstetricians and Gynecologists practice guidelines (consensus and
A C

assessment for outflow obstruction is a high pressure-low flow dynamic post-voiding residual measurement. A pressure-flow study is an excellent intermittent flow may suggest poor emptying but is not as definitive as a behaviors. A measurement of urinary flow demonstrating an impaired or outlet function) may employ flow and pressure studies during obstruction if present, which will be reflected in an elevated residual outlet (benign prostatic obstruction) and overactive bladder (urgency, medication for the component of overactive bladder if the residual outlet (stress incontinence) has more than one dysfunction potentially symptoms” of overactive bladder (urgency incontinence) and underactive more than one etiology for their symptoms which can be associated with “poor urinary storage”. Of note, some patients may have it shifts the diagnostic differential into the etiologies of incontinence who does not emptying his/her bladder completely. A normal “ejection

Th

Male and Female Patients. Incontinence. 4th International Consultation on Incontinence. eds. Staskin D, Kelleher C, et.al. Initial Assessment of Urinary and Faecal Incontinence in Adult

In the male patient examination for bladder distention, a rectal exam, and a focused neurological exam may reveal retention or neuropathy. A history of prostatic surgery is more revealing that a prostate exam, unless the prostate is absent from radical surgery. The loss of urine immediately associated with effort suggests sphincteric incontinence in distinction to a larger volume non-synchronous loss of urine with effort which suggests an unsuppressed bladder contraction (urgency incontinence).

In the male patient examination for bladder distention, a rectal exam, and a focused neurological exam may reveal retention or neuropathy. A history of prostatic surgery is more revealing that a prostate exam, unless the prostate is absent from radical surgery. The loss of urine immediately associated with effort suggests sphincteric incontinence in distinction to a larger volume non-synchronous loss of urine with effort which suggests an unsuppressed bladder contraction (urgency incontinence).

It is best to approach neural control from the sacral area “up” to the corticar area. The bladder contracts by “reflex” after filling under control of the sacral reflex center (SRC) at S2-S4. A peripheral lesion is a non-contractile bladder. If the SRC is intact and there is spinal cord lesion above S2-S4 there will be reflex emptying without cerebral control and with a lack of coordination of the external sphincter at the level of the pontine micturition center (PMC). Intracranial (cerebral) lesions precipitate bladder overactivity by failing to inhibit reflex bladder contractions during filling but preserve PMC function and sphincter coordination. The lack of sphincter coordination during emptying results in chronic obstruction, bladder wall thickening, elevated residual urine and the potential for decreasing upper tract emptying (hydronephrosis). The presence of a lesion above the sympathetic chain outflow predisposes to autonomic dysreflexia (commonly seen in quadriplegics). NOTE: Patients with intracranial lesions will be incontinent with preserved sphincter coordination. Quadriplegics with complete lesions are at high risk for both upper tract changes and autonomic dysreflexia. Paraplegics with complete lesions are at high risk, while those with incomplete lesions and sphincter coordination are at a comparative low risk for upper tract disease. Patients with peripheral neuropathy may have a non-contractile bladder and are at risk for retention. Treatment for all groups is based on the principle of low pressure urinary storage (increasing bladder capacity surgically or pharmacologically) and intermittent self catheterization for bladder emptying. In some circumstances (self or provider cath is not available) a suprapubic tube (or urethral cath) or a procedure on the bladder outlet (sphincterotomy) is recommended.

Supportd by an educational grant from Pfizer and Astellas.
ACTIVITY TITLE: Classification of Lower Urinary Tract Symptoms (LUTS) and Urinary Incontinence (UI)

DATES VALID: August 17, 2011 – August 17, 2012

CREDITS AVAILABLE: 1 Category 2B, AOA; 1 Category 1 AMA PRA™

INSTRUCTIONS: Please complete this form and return it to the address or fax number below.

<table>
<thead>
<tr>
<th>Q#</th>
<th>Content</th>
<th>Scale: P=Poor</th>
<th>F=Fair</th>
<th>G=Good</th>
<th>VG=Very Good</th>
<th>E=Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Discuss screening and identification of LUTS.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Identify different causes of LUTS.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Demonstrate an awareness of what can be accomplished in the PCP office in regards to evaluation.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Specify treatment options for OAB and BPH.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>Examine when to refer for specialist evaluation.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>To what extent this activity is fair and balanced.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>Likelihood that you will implement change in your practice based on information from this activity.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>Your OVERALL rating of this activity.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>How will you use the information presented to improve the care of your patients?</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

ONLINE:
www.RegisterWithUNT.com

MAIL TO:
UNTHSC/PACE Office
3500 Camp Bowie Blvd
Fort Worth, TX 76107

OR FAX TO:
817-735-2598

Your certificate will be mailed within three weeks of receipt.