Twenty years of teamwork, then a glaucoma breakthrough

By Jan Jarvis

Abe Clark

 

More than two decades of teamwork between researchers at the University of Iowa and UNT Health Science Center has led to a breakthrough for treating a type of glaucoma that damages the eyesight of millions and can cause irreversible vision loss.

The research focuses on myocilin, a protein implicated in both juvenile and adult-onset open-angle glaucoma, which affects about 2 million people worldwide.

Using CRISPR technology, a revolutionary genome-editing tool that can alter DNA sequences and modify gene function, researchers were able to eliminate myocilin and lower intraocular pressure to prevent further damage to the eye, said Abe Clark, PhD, Regents Professor and Executive Director of the North Texas Eye Research Institute at UNT Health Science Center.

“Using this technology, we were able to knock out the myocilin gene in mice, and we prevented a type of glaucoma,” Dr. Clark said. “We also looked at whether we could intervene after the mice have already had damage, and we were partially able to prevent further damage.”

The research is published online in the Oct. 2 issue of Proceedings of the National Academy of Science or PNAS, the official journal of the National Academy of Sciences. Scientists from the University of Iowa, UNT Health Science Center and the Massachusetts Institute of Technology collaborated on the study.

Myocilin is a protein found in structures within the eye called the trabecular meshwork, which regulates pressure. Glaucoma can develop when a mutation in myocilin affects the trabecular meshwork and causes elevated intraocular pressure.

Researchers showed that by disrupting the mutant myocilin gene using CRISPR-Cas 9 technology, they were able to reduce intraocular pressure and prevent further damage in mouse eyes. They also showed the feasibility of using the CRISP-Cas9 system in cultured human eyes.

Glaucoma affects 70 to 80 million people worldwide. Mutant myocilin is responsible for about 4 percent of cases, equivalent to more than 2 million people. Mutations in the myocilin gene have been shown to cause juvenile open-angle glaucoma as well as adult primary open-angle glaucoma.

The discovery is made even more significant because it is the first example of using CRISPR genome editing technology to treat a major intraocular disease, Dr. Clark said. The CRISPR/Cas9 technology allows for site-specific genomic targeting.

The breakthrough is the result of more than 20 years of collaboration between scientists at the University of Iowa Carver College of Medicine and UNT Health Science Center. A researcher at the McGovern Institute for Brain Research at the Massachusetts Institute of Technology also contributed to the study.

UNTHSC and the University of Iowa have been working on eye research projects together since 1993.

“The University of Iowa mapped this first glaucoma gene and I thought that I could help them identify it,” said Dr. Clark, a longtime glaucoma researcher. “I called up and asked if I could visit, and our collaboration just took off from there.”

The meeting turned into a friendship and collaboration that has endured between Dr. Clark and Val C. Sheffield, MD, PhD, Carver Chair of Medical Genetics, Professor of Pediatrics and Ophthalmology and Investigator of the Wynn Institute for Vision Research at the University of Iowa.

Over time an intellectual pipeline evolved between the two universities. The study illustrates the importance of this pipeline perfectly.

The primary first author of this publication is Ankur Jain, PhD, who graduated from Dr. Clark’s lab at UNTHSC three years ago and is now doing his postdoc work with Dr. Sheffield at Iowa. Second author is Gulab Zode, PhD, who graduated from UNTHSC, did his postdoc in the Sheffield lab at Iowa and then returned to UNTHSC as an Assistant Professor. Tasneem Sharma, PhD, was a graduate student in the Clark lab at UNTHSC and went to work in Dr. John Fingert’s lab in Iowa before returning to UNTHSC.

Dr. Clark said that the key to the long relationship is how much respect the researchers have for each other. It’s a good example of collaborative science, he said.

“It’s a nice way to demonstrate that science done in one lab doesn’t have to have all the answers,” he said. “When we work together, there is a lot of synergy going that gets us all a lot further in our research.”

Recent News

Cervantes 20240117 143815
  • Our People
|Apr 17, 2024

Protecting quality of life for senior living residents through HSC’s ICARE initiative

Through HSC’s ICARE – Infection Control Advocate and Resident Education - program, Dr. Diana Cervantes and School of Public Health students are helping to protect the quality of life for residents in nursing home communities. Dr. Cervantes is an associate professor, population and community hea...
Uyen Sa Nguyen Scaled[58]
  • Our People
|Apr 12, 2024

Faculty Highlight: Dr. Uyen-Sa D. T. Nguyen

Dr. Nguyen is an associate professor, population and community health, at The University of North Texas Health Science Center’s School of Public Health. She recently received a new pilot grant and donation from an HSC Foundation donor to support her research. Here, she talks about this new funding...
Pain Registry Licciardone
  • Research
|Apr 11, 2024

JAMA Network publishes HSC study showing chronic pain favorable outcomes associated with physician empathy

JAMA Network Open this month published an article, “Physician Empathy and Chronic Pain Outcomes,” based on national data collected by the Pain Registry for Epidemiological, Clinical, and Interventional Studies and Innovation (PRECISION) at The University of North Texas Health Science Center at F...
Cbc 6723 Scaled
  • Community
|Apr 11, 2024

A selfless act with a significant impact

In the United States alone, a patient receives a blood transfusion every two seconds. The average transfusion patient receives 2.5 units of blood — approximately 200 milliliters of red blood cells. Every three minutes, someone is diagnosed with a blood cancer, like lymphoma or leukemia, that r...