Cardiopulmonary Fitness Is Associated with Cognitive Performance in Patients with Coronary Artery Disease

Walter Swardfager, MSc, Nathan Herrmann, MD, Susan Marzolini, MSc, Mahwesh Saleem, BSc, Alexander Kiss, PhD, Prathiba Shammi, PhD, Paul Oh, MD, Krista Lanctot, PhD. JAGS 58:1519-1525, 2010
Clinical Bottom Line

- Poorer cardiopulmonary fitness is associated with poorer cognition, especially executive function, in patients with CAD.
Introduction

- Past studies show cardiovascular disease has an association with cognitive decline.
- Physical activity leads to lower rates of dementia in the general population.
- Cardiopulmonary fitness in CAD patients is an important determinant of cardiac prognosis and mortality, but an association with cognition had not been studied.
Objectives

- To investigate the association between cardiopulmonary fitness and cognitive performance in subjects with coronary artery disease (CAD).
Sources of Funding

- The Drummond Foundation
- Physicians’ Services Incorporated Foundation
- Heart and Stroke Foundation
Study Design

- Cross-sectional observational study. Patients were contacted after entry into a cardiac rehabilitation program. Their medical records were reviewed for inclusion/exclusion criteria.
Participants

- Eighty-one subjects with CAD after taking into account people who declined to be interviewed and those meeting exclusion criteria.
Inclusion Criteria

- Documented history of CAD- having had a MI within 6 weeks, angiographic evidence of ≥50% blockage in at least one major coronary artery, PCI within 3 weeks, or CABG within 6 weeks.
Exclusion Criteria

- Previously diagnosed neurodegenerative disorder, schizophreniform disorder, or bipolar disorder.
- Inability to complete cognitive testing.
- Incomplete medical records.
Testing

- Cognitive Testing - used to measure executive function, memory, and global cognition
 - Trail-Making Test Part B
 - Stroop Test (Victoria Version)
 - Digit Symbol Coding task
 - Wechsler Adult Intelligence Scale
 - California Verbal Learning Test
 - Mini-Mental State Examination
 - Revised Brief Visuospatial Memory Test
The Mini-Mental State Exam

<table>
<thead>
<tr>
<th>Patient</th>
<th>Score</th>
<th>Examiner</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Orientation
What is the (year) (season) (date) (day) (month)?

Registration
Name 3 objects: 1 second to say each. Then ask the patient all 3 after you have said them. Give 1 point for each correct answer. Then repeat them until he/she learns all 3. Count trials and record.

Attention and Calculation
Serial 7s. 1 point for each correct answer. Stop after 5 answers. Alternatively spell "world" backward.

Recall
Ask for the 3 objects repeated above. Give 1 point for each correct answer.

Language
2 () Name a pencil and watch.
1 () Repeat the following "No ifs, ands, or buts!"
3 () Follow a 3-stage command: "Take a paper in your hand, fold it in half, and put it on the floor."
1 () Read and obey the following: CLOSE YOUR EYES
1 () Write a sentence.
1 () Copy the designs shown.

Total Score
ASSESS level of consciousness along a continuum:

- Alert
- Drowsy
- Stupor
- Coma
Testing

- Cardiopulmonary Fitness - used a standardized exercise stress test to measure breath-by-breath gas samples. $VO_{2\text{Peak}}$ (peak volume of oxygen uptake) was calculated.
 - A highly reliable measure of ventilatory capacity at peak effort
Analysis

- For each cognitive test, a Z-score was calculated based on age and sex-matched norms.
- The measured $\text{VO}_{2\text{Peak}}$ was divided by the expected value.
- Pearson correlations and univariate analyses of variance were used to identify characteristics associated with test values.
Analysis

- A linear regression model was used to predict composite Z-scores and VO_{2Peak}. Possible confounders were entered to reach a final multiple linear regression model.

- All analyses were two-tailed and performed in SPSS 16.0.
Results

- 81 subjects participated.
- \(\text{VO}_2\text{Peak} \) was positively associated with the MMSE score \((r=0.241, \ P=0.03)\).
- In univariate comparisons executive function composite Z-scores were positively associated with \(\text{VO}_2\text{Peak} \) \((r=0.307, \ P=0.005)\).
- Memory composite Z-scores were positively associated with \(\text{VO}_2\text{Peak} \) \((r=0.281, \ P=0.01)\).
Results

- Executive function was the only composite Z-score independently associated with fractional VO$_{2\text{Peak}}$.
- Executive function was also the only score that remained significant after being entered into the multiple linear regression model.
Discussion

- This study not only demonstrates association between cardiopulmonary fitness and executive function, but shows this relation is independent of other cardiovascular risk factors.

- Does cognitive decline cause a decrease in physical activity or does decreasing physical activity cause cognitive decline?
Limitations

- Small sample size
- Lack of structural MRI to determine possible neuroanatomical correlates
- Cross-sectional study, making it difficult to assess causal relationships.